【大学化学】doi: 10.12461/PKU.DXHX202403091
通过对量子态空间、基函数、幺正变换等量子力学基本概念的介绍,阐释了原子结构中z轴表现出特殊性的原因,明确了在球对称的原子结构中,任何方向都不具有特殊性,z轴表观的特殊性主要源自人们选择了特定基函数来描述原子中电子的运动行为。
【无机化学学报】doi: 10.11862/CJIC.20250001
通过简单的水热离子交换法成功地制备了一种具有优异光催化制氢性能的直接Z型3D Bi2MoO6/Bi2S3异质结。通过X射线衍射、扫描电子显微镜、透射电子显微镜和N2吸附-脱附测试对样品的组成、形貌和微观结构进行了系统的表征。研究结果表明,Bi2S3具有的较小溶度积有利于Bi2MoO6向Bi2S3的原位转化,且Bi2MoO6的多孔微球结构有利于离子传输,因此在水热离子交换过程中可形成多相异质结。紫外可见近红外漫反射光谱(DRS)检测表明,该复合材料可吸收波长在1 800 nm以内的太阳光。光致发光光谱、瞬态光电流响应和电化学阻抗测试结果均证实了电荷的生成和迁移的加速。异质结的构筑能克服Bi2MoO6产氢时导带电势较低的问题,该异质结在不使用任何贵金属作为共催化剂的情况下,达到了最佳的光催化产氢速率(109.0 μmol·g-1·h-1)。根据DRS和Mott-Schottky曲线测试结果推断Bi2MoO6和Bi2S3之间构建了Z型异质结。
【大学化学】doi: 10.12461/PKU.DXHX202402006
维生素D,被誉为“阳光维生素”,在维护人体健康中具有不可或缺的作用。本文从化学角度出发,生动形象地介绍了维生素D的形成过程、发现过程、其在生物学上的功能以及在日常生活中的应用。通过深入了解维生素D,我们能更好地认识并学会如何合理利用这一重要营养素来维护自身健康。
【大学化学】doi: 10.3866/PKU.DXHX202309067
以《查理与巧克力工厂》小说为背景,简要介绍巧克力的化学成分。通过通俗易懂的方式介绍几种主流的3D打印技术及其原理,讨论食品3D打印在食品制造业的应用优势。同时,重点介绍巧克力3D打印的历史沿革、工作原理与口感风味。本文将日常生活中熟悉的食品与新颖的科学前沿结合,轻松易懂、易于阅读,充分达到大众科普的目的。
【无机化学学报】doi: 10.11862/CJIC.20230435
通过水热法制备出一系列Z型异质结Cu2O/Bi2MoO6新型光催化剂。采用扫描电子显微镜、粉末X射线衍射、红外光谱、紫外可见吸收光谱等表征手段研究了催化剂的形貌、结构性质和光电化学性质,并以四环素(TC)为降解目标污染物,进一步探究了其催化效率。实验结果表明,Cu2O的加入提高了复合催化剂的光催化性能,其中20% Cu2O/Bi2MoO6复合催化剂(Cu2O和Bi2MoO6的质量比为20%)降解效果最好,100 min内可降解95%的TC。Cu2O与Bi2MoO6之间的协同作用使其可以吸收更多的可见光,所构建的Z型异质结改变了电子转移途径,提高了电子与空穴的分离效率,光催化活性显著提高。通过自由基捕获实验和能带结构,分析了Z型异质结Cu2O/Bi2MoO6复合催化剂光催化降解TC可能的机理。
【物理化学学报】doi: 10.3866/PKU.WHXB202305043
探索高效水分解光催化剂具有获得氢能源的巨大潜力。调控异质结界面可以有效地促进电荷载流子的分离和太阳能的利用,从而提高光催化活性。本工作使用了一种机械混合辅助自组装方法来构建NiPS3 (NPS)纳米片(NSs)/C3N5 (CN) NSs (NPS/CN)异质结,即在二维(2D) CN NSs表面紧密沉积2D NPS NSs以形成2D/2D异质结构。在可见光下,通过在去离子水和海水中分解水生成氢气来评价样品的光催化性能。与CN NSs和NPS NSs相比,NPS/CN复合材料显示出较高的光催化产氢(PHE)活性,这是由于光捕获能力增加和异质结形成的协同作用所致。然而,过量的NPS NSs沉积在CN NSs表面会降低NPS/CN中CN NSs组分的光吸收,从而降低NPS/CN复合材料的PHE活性。这表明,NPS/CN复合材料要获得良好的光催化活性,需要两个组分之间适当的质量比。优化后的光催化剂(3-NPS/CN)具有良好的结构稳定性,在可见光下PHE效率最高,为47.71 μmol∙h−1,是CN NSs的2385.50倍。此外,3-NPS/CN在海水中也表现出良好的PHE活性,反应速率为8.99 μmol∙h−1。采用光电化学、稳态光致发光(PL)、时间分辨光致发光(TR-PL)、稳态表面光电压(SPV)和时间分辨表面光电压(TPV)技术研究了不同光催化剂上的电荷分离和迁移。根据表征结果提出了一种可能的PHE机理。在NPS/CN光催化剂中,由于CN NSs和NPS NSs之间的电位差和强的界面电子耦合,光生电子从CN NSs的导带迅速迁移到NPS NSs的导带。然后,聚积在NPS NSs组份导带上的光生电子可以有效地还原质子生成氢气分子。同时,在三乙醇胺(TEOA)分子存在下,CN NSs和NPS NSs的价带上的光生空穴被消耗。本研究提供了一种简单的2D/2D异质结构光催化剂制备方法,该方法对于构建高效二维异质结光催化剂在能源领域中的应用具有重要价值。
【物理化学学报】doi: 10.1016/j.actphy.2025.100131
合理构建阶梯型(S型)异质结已被证实是优化半导体光催化剂界面载流子分离动力学的有效策略。本研究通过超声辅助合成策略成功制备了结构明确的3D/2D分级ReSe2/ZnCdS S型异质结,实现了精准的纳米结构调控和增强的界面耦合,从而显著优化了光生电荷的分离与传输动力学。无序纳米花状ReSe2结构不仅显著提升了光捕获能力和表面反应位点密度,同时有效抑制了ZnCdS纳米颗粒的团聚现象。优化后的5%ReSe2/ZnCdS复合物在可见光照射下表现出优异的析氢速率,高达13.96 mmol∙g−1∙h−1,是纯ZnCdS (2.36 mmol∙g−1∙h−1)的5.91倍,且优于多数传统异质结体系。这一显著增强的光催化性能主要归因于S型ReSe2/ZnCdS异质结的形成,该结构有效促进了光生电子-空穴的分离,并显著增强了光催化氧化还原能力。通过原位X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算,证实了ReSe2/ZnCdS异质界面的S型电荷转移机制。此外,氢吸附吉布斯自由能计算表明,ReSe2作为主要催化中心,其氢吸附动力学性能明显优于ZnCdS。本研究为开发高效ZnCdS基S型异质结产氢光催化剂提供了普适性的设计策略和研究思路。
【大学化学】doi: 10.3866/PKU.DXHX202308039
实验教育是一种被广泛认可的教学方法,通过实践活动来培养学生的问题解决能力和创新思维。而3D打印多元合金材料是当前电催化中备受关注的领域。本文将实验教育与3D打印合金相结合,研究了其对学生的影响和教育效果。本文首先介绍了实验教育的重要性和作用,以及合金材料的特点和应用前景。其次,讨论了3D打印技术在合金制备中的应用潜力。通过让学生参与实验设计和进行实验来提高学生的参与度、学习动机和科学素养。本研究旨在为教育实践提供新思路和方法,培养学生的科学思维和实践能力,为材料科学和工程领域培养更多的创新人才。
【大学化学】doi: 10.3866/PKU.DXHX202310064
目前3D打印教学实验的内容大都是利用商业化聚合物让学生初步了解3D打印的基本流程。这种基础实验难以让学生接触到前沿的新型材料,对于新材料如何与3D打印技术结合这些底层科学问题也往往被忽略。高分子凝胶具有富溶剂特性和良好的生物相容性,在组织工程、药物输送、柔性电子等诸多领域都有着广泛的应用前景。本实验结合了作者近期的科研成果,在给学生指定新型凝胶基材料之后(水凝胶/有机凝胶),引导学生探索调控凝胶基材料的流变学性能和溶胀性能,并将凝胶基材料和3D打印技术有效地结合起来,从而对这种先进材料的加工方式有更加具体的了解。本实验的教学设计,强化了学生对诺贝尔奖成果的深入理解,并增强了学生运用所学专业知识服务国家发展需求的意识,培养了学生勇于探索的创新精神和分工合作的团队意识。
【无机化学学报】doi: 10.11862/CJIC.20230314
通过原位共沉淀法可控制备了系列直接Z型MIL-100(Fe)/BiOBr异质结。使用粉末X射线衍射(PXRD)、傅里叶红外变换(FTIR)光谱、紫外可见漫反射光谱(UV-Vis DRS)、扫描电镜(SEM)、高倍透射电镜(HRTEM)以及X射线光电子能谱(XPS)对MIL-100(Fe)/BiOBr异质结晶体结构、微观形貌、光学性能、化学组成进行表征。以低功率发光二级管可见光为光源,探究了MIL-100(Fe)/BiOBr异质结光芬顿降解磺胺甲恶唑(SMX)性能。最佳反应体系MB-7/Vis/H2O2(MB-7是MIL-100(Fe)质量为BiOBr质量的70%时制备的样品)在光源照射70 min后可降解99.8% SMX(5 mg·L-1)。同时,还考察了H2O2浓度、催化剂投加量、pH值以及无机阴离子对MB-7/Vis/H2O2降解SMX影响。MB-7/Vis/H2O2能够在经过5轮循环降解实验后保持95%以上的SMX降解效率,表明其具有较好的循环稳定性。通过光致发光(PL)光谱、光电化学测试、活性物质捕获实验以及电子自旋共振(ESR)技术对光芬顿降解SMX机理进行了揭示。增强的光芬顿活性的机制主要来自于异质结的构建加速了光生载流子的分离,进而促进了活性物质产生以及Fe3+/Fe2+的循环。
出版年份
相关作者
相关热词
- 首页
- 上一页
- 1
- 2
- 3
- 下一页
- 末页
- 共:3页
- 跳转
- Go
