【无机化学学报】doi: 10.11862/CJIC.20240342
酰胺还原加氢是获得高附加值有机化合物的一种高效但极具挑战性的方法。本研究中,我们利用乙酰丙酮(Hacac)构筑的稀土多核配合物[Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH (Ce10)作为路易斯酸催化剂,实现了高效的酰胺硼氢化还原反应,产率可达50%~99%。此外,该方法成功应用于抗抑郁药物苯乙胺的克级合成。通过核磁共振、单晶X射线衍射等分析手段,对该反应的催化机理进行了深入探究。
【无机化学学报】doi: 10.11862/CJIC.20230488
首先采用共沉淀方法制备富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2原始样品(P-LRMO),然后通过简单的湿化学法以及低温煅烧方法对其进行不同含量Ga2O3原位包覆。透射电子显微镜(TEM)以及X射线光电子能谱(XPS)结果表明在P-LRMO表面成功合成了Ga2O3包覆层。电化学测试结果表明:含有3%Ga2O3的改性材料G3-LRMO具有最优的电化学性能,其在0.1C倍率(电流密度为25 mA·g-1)下首圈充放电比容量可以达到270.1 mAh·g-1,在5C倍率下容量仍能保持127.4 mAh·g-1,优于未改性材料的90.7 mAh·g-1,表现出优异的倍率性能。G3-LRMO在1C倍率下循环200圈后仍有190.7 mAh·g-1的容量,容量保持率由未改性前的72.9%提升至85.6%,证明Ga2O3包覆改性能有效提升富锂锰基材料的循环稳定性。并且,G3-LRMO在1C倍率下循环100圈后,电荷转移阻抗(Rct)为107.7 Ω,远低于未改性材料的251.5 Ω,表明Ga2O3包覆层能提高材料的电子传输速率。
【无机化学学报】doi: 10.11862/CJIC.20230421
为提高光热催化CO2加氢In2O3催化剂的催化活性,采用均相水热法制备Mg(OH)2-In(OH)3前驱体,通过高温煅烧和H2-还原处理得到了富含氧空位的Mg掺杂In2O3-x(Mg-In2O3-x)催化剂。在300 ℃、常压、可见光照射条件下,CO2加氢转化为CO的CO2转化率可达31.20%,CO产生速率为14.22 mmol·gcat-1·h-1,CO选择性为100%。相比于单一In2O3-x催化剂,Mg-In2O3-x催化剂光热催化CO2转化率及CO产生速率明显提高,这归因于Mg成功掺杂到In2O3晶格中,促进In2O3表面氧空位的形成,进而对可见光响应效率大幅提高,并有效减缓光生电子-空穴的复合。
【物理化学学报】doi: 10.1016/j.actphy.2025.100117
过氧化氢(H2O2)是100种最重要的化学品之一,广泛应用于漂白、消毒和合成化学等行业。最近,它被用作直接燃料电池的燃料。当前的H2O2生产依赖于苛刻的蒽醌氧化法。从环境、可持续性和经济角度来看,光催化H2O2生产是一种更有利的替代方法。该过程需要水和分子氧作为输入,并以阳光为唯一能源。尽管有这些优点,该技术的实际应用仍然具有挑战性。最常见的瓶颈是光催化剂的不足、上坡热力学、缓慢的过程动力学以及竞争性反应和逆向反应。本文讨论了这些局限性,并重点提出了提高效率和选择性的建议观点,旨在为大规模H2O2光生产铺平道路。
【物理化学学报】doi: 10.3866/PKU.WHXB202312007
过渡金属羟基氧化物已被证明是水氧化反应的可靠助催化剂。然而,在水氧化过程中它们对H2O及其中间产物的吸附能力不足,极大制约了水氧化速率的提高。在本研究中,H2O及其中间体在MnOOH助剂的缺电子Mn(3+δ)+上的自发增强吸附可以极大地促进水的快速氧化,从而在纯水体系中实现高效的光催化H2O2生成。首先,无定形MnOOH通过定向光诱导氧化方法选择性地沉积在AuPd改性的单晶BiVO4光催化剂的(110)面上,从而制备了AuPd/BiVO4/MnOOH光催化剂。光催化实验表明,所制备的AuPd/BiVO4/MnOOH (0.5%)光催化剂的H2O2产生速率达到214μmol·L-1,并表现出良好的稳定性和重现性。密度泛函理论计算和X射线光电子能谱表征表明,MnOOH的自由电子可以有效地转移到BiVO4上,诱导缺电子Mn位(Mn(3+δ)+)的产生,从而自发地促进H2O及其中间体的吸附,增强四电子WOR反应,导致H2O2的高效生成。本文关于助催化剂与主体催化剂之间强相互作用的工作为其它高效催化材料的合理设计提供了一种新的思路。
【无机化学学报】doi: 10.11862/CJIC.20230435
通过水热法制备出一系列Z型异质结Cu2O/Bi2MoO6新型光催化剂。采用扫描电子显微镜、粉末X射线衍射、红外光谱、紫外可见吸收光谱等表征手段研究了催化剂的形貌、结构性质和光电化学性质,并以四环素(TC)为降解目标污染物,进一步探究了其催化效率。实验结果表明,Cu2O的加入提高了复合催化剂的光催化性能,其中20% Cu2O/Bi2MoO6复合催化剂(Cu2O和Bi2MoO6的质量比为20%)降解效果最好,100 min内可降解95%的TC。Cu2O与Bi2MoO6之间的协同作用使其可以吸收更多的可见光,所构建的Z型异质结改变了电子转移途径,提高了电子与空穴的分离效率,光催化活性显著提高。通过自由基捕获实验和能带结构,分析了Z型异质结Cu2O/Bi2MoO6复合催化剂光催化降解TC可能的机理。
【无机化学学报】doi: 10.11862/CJIC.20240001
结合Cu(Ⅱ)离子浸渍吸附方法及直流电弧等离子体喷射化学气相沉积技术制备了一种电化学/电生理双模Cu2O/Cu-垂直石墨烯微电极,并研究了电化学方法检测尿酸以及记录脑电信号的双响应性能。使用扫描电子显微镜、透射电子显微镜、X射线衍射仪表征了形貌、微结构及晶体成分,并测试了电化学及脑电记录能力。结果表明,该微电极直径仅为200 μm,大量镶嵌Cu2O/Cu纳米粒子的石墨烯纳米片垂直生长在基片上,排列成了一种三维的多孔结构,使其具有了高的电化学催化活性、短程离子扩散路径、以及长程导电网络。由此,以10 μL的饱和NaCl溶液为介质记录脑电信号时,该微电极的皮肤接触电阻低至约7.05 kΩ,生理电采集性能接近涂导电膏的商用湿电极。此外,该微电极还灵敏响应尿酸的氧化电流,检测浓度范围在0.5~500μmol·L-1,检测限低至0.024 μmol·L-1,且具有良好的抗干扰能力及长期稳定性。
【无机化学学报】doi: 10.11862/CJIC.20230469
以单一Fe2+作为铁源,0.4%的H2O2为氧化剂,NaOH为沉淀剂,采用氧化共沉淀法制备了尺寸为7 nm的Fe3O4颗粒。为进一步体外模拟肿瘤饥饿治疗,设计了一个包含5 mL(10 μg·mL-1)的葡萄糖氧化酶和15 mL(5 mg·mL-1)葡萄糖溶液的体系,以探究纳米Fe3O4的类过氧化氢酶(CAT)与类过氧化物酶(POD)催化性能的最适条件。结果表明:在1 mg·mL-1 pH=5.0时,纳米Fe3O4的类CAT活性能推动葡萄糖氧化反应的反应速度增加、限度增大;pH=5.0时,纳米Fe3O4的类POD活性更好,能高效率催化H2O2产生活性氧。
【无机化学学报】doi: 10.11862/CJIC.20240022
联合元素掺杂和形貌调控策略,采用固相燃烧法和不同焙烧温度处理合成LiAl0.08Mn1.92O4正极材料。实验结果表明,Al掺杂和焙烧温度的变化未改变LiMn2O4的相结构,随着温度的升高,结晶性增强,颗粒尺寸增大,其中焙烧温度650 ℃是形成截断八面体单晶颗粒形貌的关键温度,750 ℃是颗粒突然变大的突变温度。650 ℃优化焙烧温度下焙烧的LiAl0.08Mn1.92O4形成了较完整的包含(111)、(110)和(100)晶面的截断八面体单晶颗粒形貌,表现出优良的电化学和动力学性能。在1C下其首次放电比容量为112.0 mAh·g-1,循环500次后容量保持率为72.9%,在5C和10C倍率下,其首次放电比容量可达到107.1和100.4 mAh·g-1,经2 000次长循环后,容量保持率为52.2%和53.5%。并且具有最小氧化还原峰电位差(ΔEp2,循环前后分别为0.109和0.114 V)、最小电荷转移电阻(Rct,循环前后分别106.49和125.49 Ω)及较大的锂离子扩散系数(DLi+=1.72×10-16 cm2·s-1),表现出较好的电化学可逆性和较快的锂离子扩散速率。Al掺杂和单晶截断八面体颗粒形貌既有效抑制了LiMn2O4的Jahn-Teller畸变,又降低了Mn溶解,提高了材料的倍率性能和长循环寿命。
【大学化学】doi: 10.3866/PKU.DXHX202310055
有机化学是我校临床专业本科生的基础课程,对学生后续专业课的学习具有重要的“桥梁”作用。然而有机化学理论抽象,知识点众多,学生不易理解与掌握。针对传统课堂中存在的教学问题,本文采用O-PIRTAS翻转课堂这一新模式,结合有机化学教学特点,以具体的羧酸章节为例,对课堂教学进行重新设计,旨在探究该模式在有机化学课程中的应用,继而有利于提高教学效果。
出版年份
相关作者
相关热词
- 首页
- 上一页
- 1
- 2
- 3
- 4
- 5
- 下一页
- 末页
- 共:5页
- 跳转
- Go