【大学化学】doi: 10.12461/PKU.DXHX202407102
在热力学可逆循环过程中,用温–熵图(T–S图)表示系统的温度与熵的变化关系,能同时显示出系统所吸的热与所做的功,从而可以方便地计算得到该循环的热功转换效率。本文总结了T–S图在多个经典热功转换循环过程中的应用,还介绍了近期报道的、利用电势的温度效应或浓差效应构建热力学循环,从低品位热能中获取能量的几个新型能量转换过程以及T–S图在其中的指导作用,可加深师生对T–S图的理解和认识,并拓展其应用范围。
【大学化学】doi: 10.3866/PKU.DXHX202310047
对基于米氏机理的酶催化反应模型,本文介绍了求解全部反应速率常数的两种方法:瞬态法和数学计算法,其中瞬态法的核心是分析反应达到稳态前的过程,数学计算法的核心是寻找反应过程中酶与底物浓度之间的关系。通过求解全部反应速率常数,不仅可以加深对酶催化反应动力学的理解,而且有助于提高对反应动力学的认识。
【物理化学学报】doi: 10.3866/PKU.WHXB202309036
材料表面是能量储存和转化反应发生的直接场所,因此,真实反应条件下材料的表面化学和结构在理解反应机理方面起着关键作用。X射线光电子能谱是一种表面敏感技术,已经成为研究材料表面复杂成分和电子结构的主要工具之一。传统的X射线光电子能谱受限于真空条件,这限制了对原位条件下固-气和固-液界面的研究。但随着真空差分技术和静电透镜系统的引入,X射线光电子能谱不再局限于超高真空条件。结合同步辐射光源的优势,近常压X射线光电子能谱(NAP-XPS)展现出更先进的特点。在近年来,NAP-XPS迅速成为研究各种固-气和固-液界面的重要工具。通过NAP-XPS和一些先进的光谱学和显微镜技术,研究人员可以获得原子尺度的界面信息,这使得他们能够更深入地了解这些界面的性质。本文对近年来代表性的NAP-XPS研究进展进行了简要回顾,以阐明其在固-气和固-液界面研究领域中引发的新认识。最后,文章还讨论了关于NAP-XPS技术的挑战和前景,希望可以激发新的研究思路。
【大学化学】doi: 10.12461/PKU.DXHX202407052
近年来,金纳米粒子被发现具有纳米酶特性,可以模拟天然过氧化物酶催化过氧化氢分解。本实验选用明胶还原制备金纳米粒子,通过紫外-可见分光光度法测定金纳米粒子催化过氧化氢分解反应的米氏常数。将科学前沿概念“纳米酶”设计成适合本科生的物理化学动力学实验,既可锻炼学生的综合能力,又能激发学生对化学实验的兴趣与民族自豪感。