【无机化学学报】doi: 10.11862/CJIC.20240392
AgVO3/ZIF 8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO3 and ZIF-8. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-power transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL) spectroscopy, electron spin resonance (ESR) spectroscopy, transient photocurrent and electrochemical impedance spectroscopy (EIS) were used to characterize binary composites. Tetracycline (TC) was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions, and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents. In addition, we further investigated the photocatalytic mechanism of the binary composite material AgVO3/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst. The experimental results show that the degradation efficiency of 10% AZ, prepared with a molar ratio of 10% AgVO3 and ZIF-8 to TC, was 75.0%. This indicates that the photocatalytic activity can be maintained even under a certain ionic content, making it a suitable photocatalyst for optimal use. In addition, the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.