【大学化学】doi: 10.3866/PKU.DXHX202312065
本文介绍了诺贝尔化学奖得主、德国化学家卡尔∙齐格勒(Karl Ziegler)的科研历程及贡献以纪念他逝世50周年。Ziegler对科学的热情、独特的思维和卓越的实验能力奠定了他的科学基础。他专注于自由基化合物、多元环化合物和有机金属化合物的研究,他与朱利奥∙纳塔共同发明命名的Ziegler-Natta催化剂对全球聚烯烃工业产生深远影响,造就了上千亿美元的市场。
【物理化学学报】doi: 10.1016/j.actphy.2025.100064
光催化合成过氧化氢(H2O2)是一种至关重要的清洁能源转化过程,涉及对氧气的两电子还原。然而,这一过程常常受限于缓慢的水氧化反应,后者需要光生空穴的参与。为了应对此挑战,我们设计了一种双功能的S型ZnO/CdIn2S4异质结体系,将H2O2生成与增值的苄胺(BA)氧化反应进行耦合。在此双功能光催化系统中,CdIn2S₄中的光生电子可以高效地还原O2生成H2O2,而ZnO中的光生空穴则选择性地将BA氧化为N-亚苄基苄胺。得益于S型异质结的优势,相比于纯ZnO或CdIn2S4,优化后的ZnO/CdIn2S4光催化剂展示出显著更高的H2O2生成速率(386 μmol·L−1·h−1)和BA转化率(81%)。飞秒瞬态吸收光谱(fs-TA)结果说明,ZnO/CdIn2S4复合材料在光的激发下,在ZnO导带(CB)和CdIn2S4价带(VB)之间发生超快S型电子转移。此外,ZnO的VB空穴和CdIn2S4的CB电子的及时消耗,有助于加速ZnO/CdIn2S4 S型异质结界面中的电荷转移。本文中ZnO/CdIn2S4 S型光催化体系的创新设计为高效的双功能异质结光催化系统的开发提供了新的思路,并引入了一种利用fs-TA光谱研究S型异质结的新方法。
【无机化学学报】doi: 10.11862/CJIC.20240236
TiO2 nanobelts and Co3O4/TiO2 catalytic materials were prepared using the hydrothermal method. The catalyst was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray electron spectroscopy, and fluorescence spectroscopy. At room temperature, with a relative humidity of 50.0%, the total gas flow rate of 1.0 L·min-1, the space velocity of 1.05×104 h-1, and toluene volume concentration of 25.0 μL·L-1, two 6 W vacuum ultraviolet lamps were used as light sources to catalyze, degrade, and mineralize toluene. The results show that the prepared catalyst is in the shape of nano-ribbons. The loading of Co3O4 inhibits the recombination of photogenerated electrons and holes and can effectively improve the catalytic performance. The Co3O4/TiO2 with a load of 6.0% Co3O4 has the best catalytic effect. When N2 was used as a carrier gas, the degradation rate of toluene was only 34.7%. The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light. When air was used as a carrier gas, O3 was produced. The Co3O4/TiO2 with a load of 6.0% and vacuum ultraviolet synergistically promote toluene degradation. The highest degradation rate of toluene was 91.7% and the mineralization rate was 74.6%. The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas.