基于DNA杂交链式反应和杂交空位的无标记荧光检测DNA研究

徐杰 林滨 王亚 徐志爱 程桂英 张文

引用本文: 徐杰,  林滨,  王亚,  徐志爱,  程桂英,  张文. 基于DNA杂交链式反应和杂交空位的无标记荧光检测DNA研究[J]. 分析化学, 2018, 46(7): 1095-1101. doi: 10.11895/j.issn.0253-3820.181142 shu
Citation:  XU Jie,  LIN Bin,  WANG Ya,  XU Zhi-Ai,  CHENG Gui-Ying,  ZHANG Wen. Label-free Fluorescent DNA Detection Strategy Based on Hybridization Chain Reaction and Vacant Site-Binding Molecule[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1095-1101. doi: 10.11895/j.issn.0253-3820.181142 shu

基于DNA杂交链式反应和杂交空位的无标记荧光检测DNA研究

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21775046,21675055)资助

摘要: 基于DNA杂交链式反应(Hybridization chain reaction,HCR)的信号放大策略,通过在参与HCR反应的发夹型DNA中设计一个特殊碱基,HCR反应后,该碱基对位出现杂交空位,利用杂交空位与荧光小分子(2-Amino-5,6,7-trimethyl-1,8-naphthyridine,ATMND)特异性结合产生的荧光淬灭效应,构建了一种无标记、无酶、灵敏的DNA检测体系。利用凝胶电泳和原子力显微镜等对目标DNA引发两个发夹型DNA交替自组装形成的超级长链进行了表征。通过对杂交盐浓度和ATMND浓度等条件的优化,获得了满意结果。相比于未利用此放大信号策略的分析方法,灵敏度提高了两个数量级,目标DNA浓度在5.0~72.7 nmol/L浓度范围内与荧光比值(F/F0)呈现良好的线性关系,检出限为2.0 nmol/L。

English

    1. [1]

      Labib M, Sargent E H, Kelley S O. Chem. Rev., 2016, 116(16):9001-9090

    2. [2]

      Zhao Y, Chen F, Li Q, Wang L, Fan C. Chem. Rev., 2015, 115(22):12491-12545

    3. [3]

      Du Y, Dong S. Anal. Chem., 2016, 89(1):189-215

    4. [4]

      Xi Q, Zhou D M, Kan YY, Ge J, Wu Z K, Yu R Q, Jiang J H. Anal. Chem., 2014, 86(3):1361-1365

    5. [5]

      Liu L, Liu J W, Wu H, Wang X N, Yu R Q, Jiang J H. Anal. Chem., 2018, 90 (3):1502-1505

    6. [6]

      Yu Y J, Yu C, Niu Y Z, Chen J, Zhao Y L, Zhang Y C, Gao R F, He J L. Biosens. Bioelectron., 2018, 101:297-303

    7. [7]

      Yin J, Liu Y, Wang S, Deng J, Lin X, Gao J. Sens. Actuators B, 2018, 256:573-579

    8. [8]

      Mapes A A, Kloosterman A D, Marion V, Poot C J. J. Forensic Sci., 2016, 61(4):1055-1061

    9. [9]

      Petralia S, Conoci S. ACS Sensors, 2017, 2(7):876-891

    10. [10]

      Brahma D, Narang D, Chandra M, Gupta K, Singh A, Kaur G. Trop. Biomed., 2017, 34(4):911-927

    11. [11]

      Fernandes T J, Costa J, Oliveira M B P, Mafra I. Food Chem., 2018, 245:1034-1041

    12. [12]

      Dirks R M, Pierce N A. Proc. Natl. Acad. Sci. USA, 2004, 101:15275-15278

    13. [13]

      Shi L, Rong X, Wang Y, Ding S, Tang W. Biosens. Bioelectron., 2018, 102:41-48

    14. [14]

      Li H, Chang J,Hou T, Li F. Anal. Chem., 2016, 89(1):673-680

    15. [15]

      Gao F, Du Y, Yao J, Zhang Y, Gao J. RSC Adv., 2015, 5(12):9123-9129

    16. [16]

      Sheng Q, Cheng N, Bai W, Zheng J. Chem. Commun., 2015, 51(11):2114-2117

    17. [17]

      Dai J Y, Duan Z J, Cao M Z, Hao M R, He H F, Xiao D. Talanta, 2018, 181:142-146

    18. [18]

      Zheng X X, Liu Q, Jing C, Li Y, Li D, Luo W J, Wen Y Q, He Y, Huang Q, Long Y T, Fan C H. Angew. Chem. Int. Edit., 2011, 123(50):12200-12204

    19. [19]

      Kokkino C T, Giokas D L, Economou A S, Petrou P S, Kakabakos S E. Anal. Chem., 2018, 90(2):1092-1097

    20. [20]

      Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, He L. Anal. Chem., 2013, 85(16):7689-7695

    21. [21]

      Chen X, Bai X, Li H, Zhang B. RSC Adv., 2015, 5(45):35448-35452

    22. [22]

      Chang K, Pi Y, Lu W, Wang F, Pan F, Li F, Chen M. Biosens. Bioelectron., 2014, 60:318-324

    23. [23]

      Zhan S, Wu Y, Wang L, Zhan X, Zhou P. Biosens. Bioelectron., 2016, 86:353-368

    24. [24]

      Zhao Y, Liu H, Chen F, Bai M, Zhao J, Zhao Y. Biosens. Bioelectron., 2016, 86:892-898

    25. [25]

      Sonkar S C, Sachdev D, Mishra P K, Kumar A, Mittal P, Saluja D. Biosens. Bioelectron., 2016, 86:41-47

    26. [26]

      Sassolas A, Blum L J, Leca-Bouvier B D. Analyst, 2011, 136(2):257-274

    27. [27]

      Zhu W, Zhao Z, Li Z, Jiang J, Shen G, Yu R. Analyst, 2012, 137(23):5506-5509

    28. [28]

      He Y, Wang Z G, Tang H W, Pang D W. Biosens. Bioelectron., 2011, 29(1):76-81

    29. [29]

      Tan Y, Zhang X, Xie Y, Zhao R, Tan C, Jiang Y. Analyst, 2012, 137(10):2309-2312

    30. [30]

      Zhu Z, Yang C, Zhou X, Qin J. Chem. Commun., 2011, 47(11):3192-3194

    31. [31]

      Xu Z, Morita K, Sato Y, Dai Q, Nishizawa S, Teramae N. Chem. Commun., 2009, 42:6445-6447

    32. [32]

      Fan L, Zhou Y F, Li Q S, Zhou X S, Shao Y, Habermeyer B, Wang H, Shi X H, Xu Z A. Anal. Chem., 2017, 89 (17):9299-9306

    33. [33]

      Zhu L L, Zhang J Y, Wang F Y, Wang Y, Zhang W. Biosens. Bioelectron., 2016, 78:206-212

    34. [34]

      Su J, Goldberg A F, Stoltz B M. Light Sci. Appl., 2017, 5(1), e16001

    35. [35]

      Yoshimoto K, Nishizawa S, Minagawa M, Teramae N. J. Am. Chem. Soc., 2003, 125:8982-8983

    36. [36]

      Wu N, Gao W, He X, Chang Z, Xu M. Biosens. Bioelectron., 2013, 39:210-214

    37. [37]

      Gonçalves H M R, Moreira L, Pereira L, Jorge P, Gouveia C, Martins-Lopes P, Fernandes J R A. Biosens. Bioelectron., 2016, 84:30-36

    38. [38]

      Skotadis E, Voutyras K, Chatzipetrou M, Tsekenis G, Patsiouras L, Madianos L, Chatzandroulis S, Zergioti I, Tsoukalas D. Biosens. Bioelectron., 2016, 81:388-394

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  552
  • HTML全文浏览量:  93
文章相关
  • 收稿日期:  2018-03-06
  • 修回日期:  2018-03-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章