Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles

Xiao-Cheng Wang Shi-Xin Zhou Lan Ding Yu-Han Zhao Shen-Xi Min Bin Dong Bo Song

Citation:  Xiao-Cheng Wang, Shi-Xin Zhou, Lan Ding, Yu-Han Zhao, Shen-Xi Min, Bin Dong, Bo Song. Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles[J]. Chinese Journal of Polymer Science, 2019, 37(8): 767-773. doi: 10.1007/s10118-019-2256-6 shu

Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles

English


    1. [1]

      Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal. Chim. Acta. 2004, 522, 1-8. doi: 10.1016/j.aca.2004.06.057

    2. [2]

      Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63-72. doi: 10.1016/j.copbio.2004.11.003

    3. [3]

      Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326-4354. doi: 10.1039/b915139g

    4. [4]

      Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759. doi: 10.1126/science.1077194

    5. [5]

      Fernández-Suárez, M.; Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929-943. doi: 10.1038/nrm2531

    6. [6]

      Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906-918. doi: 10.1038/nrm976

    7. [7]

      Iino, R.; Koyama, I.; Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 2001, 80, 2667-2677. doi: 10.1016/S0006-3495(01)76236-4

    8. [8]

      Nagai, T.; Ibata, K.; Park, E. S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002, 20, 87-90. doi: 10.1038/nbt0102-87

    9. [9]

      Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563-4601. doi: 10.1039/C4CS00051J

    10. [10]

      Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 2011, 123, 3492-3496. doi: 10.1002/ange.201007461

    11. [11]

      Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem. Int. Ed. 2013, 125, 13240-13244. doi: 10.1002/ange.201307346

    12. [12]

      Ding, D.; Goh, C. C.; Feng, G.; Zhao, Z.; Liu, J.; Liu, R.; Tomczak, N.; Geng, J.; Tang, B. Z.; Ng, L. G., Liu, B. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv. Mater. 2013, 25, 6083-6088. doi: 10.1002/adma.201301938

    13. [13]

      Liu, L. J.; Liu, W.; Ji, G.; Wu, Z. Y.; Xu, B.; Qian, J.; Tian, W. J. NIR emission nanoparticles based on FRET composed of AIE luminogens and NIR dyes for two-photon fluorescence imaging. Chinese J. Polym. Sci. 2019, 37, 401-408. doi: 10.1007/s10118-019-2206-3

    14. [14]

      Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Tao, L.; Wei, Y. Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale. 2013, 5, 147-150. doi: 10.1039/C2NR32698A

    15. [15]

      Wu, X.; Sun, S.; Wang, Y.; Zhu, J.; Jiang, K.; Leng, Y.; Shu, Q.; Lin, H. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens. Bioelectron. 2017, 90, 501-507. doi: 10.1016/j.bios.2016.10.060

    16. [16]

      Tang, L.; Wu, T.; Tang, Z. W.; Xiao, J. Y.; Zhuo, R. X.; Shi, B.; Liu, C. J. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology. 2016, 27, 315104. doi: 10.1088/0957-4484/27/31/315104

    17. [17]

      Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003, 300, 1434-1436. doi: 10.1126/science.1083780

    18. [18]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005, 307, 538. doi: 10.1126/science.1104274

    19. [19]

      Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570-6597. doi: 10.1039/C4CS00014E

    20. [20]

      Feng, G.; Mao, D.; Liu, J.; Goh, C. C.; Ng, L. G.; Kong, D.; Tang, B. Z.; Liu, B. Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale. 2018, 10, 5869-5874. doi: 10.1039/C7NR09196F

    21. [21]

      Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale. 2015, 7, 11486-11508. doi: 10.1039/C5NR01444A

    22. [22]

      Zhan, R.; Pan, Y.; Manghnani, P. N.; Liu, B. AIE Polymers: Synthesis, properties, and biological applications. Macromol. Biosci. 2017, 17, 1600433. doi: 10.1002/mabi.v17.5

    23. [23]

      Ma, C.; Xie, G.; Zhang, X.; Yang, L.; Li, Y.; Liu, H.; Wang, K.; Wei, Y. Biocompatible fluorescent polymers from PEGylation of an aggregation-induced emission dye. Dyes Pigments 2017, 139, 672-680. doi: 10.1016/j.dyepig.2016.12.070

    24. [24]

      Zhou, D.; Zhang, G.; Yu, Q.; Gan, Z. Folic acid modified polymeric micelles for intravesical instilled chemotherapy. Chinese J. Polym. Sci. 2018, 36, 479-487. doi: 10.1007/s10118-018-2009-y

    25. [25]

      He, J.; Chen, H.; Guo, Y.; Wang, L.; Zhu, L.; Karahan, H. E.; Chen, Y. Polycondensation of a perylene bisimide derivative and l-malic acid as water-soluble conjugates for fluorescent labeling of live mammalian cells. Polymers. 2018, 10, 559. doi: 10.3390/polym10050559

    26. [26]

      Wang, K.; Zhang, X.; Zhang, X.; Ma, C.; Li, Z.; Huang, Z.; Zhang, Q.; Wei, Y. Preparation of emissive glucose-containing polymer nanoparticles and their cell imaging applications. Polym. Chem. 2015, 6, 4455-4461. doi: 10.1039/C5PY00378D

    27. [27]

      Huang, Z.; Zhang, X.; Zhang, X.; Wang, S.; Yang, B.; Wang, K.; Yuan, J.; Tao, L.; Wei, Y. Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polym. Bull. 2017, 74, 4525-4536. doi: 10.1007/s00289-017-1969-3

    28. [28]

      Hua, Z.; Wilks, T. R.; Keogh, R.; Herwig, G.; Stavros, V. G.; O’Reilly, R. K. Entrapment and rigidification of adenine by a photo-cross-linked thymine network leads to fluorescent polymer nanoparticles. Chem. Mater. 2018, 30, 1408-1416. doi: 10.1021/acs.chemmater.7b05206

    29. [29]

      Yang, H. M.; Park, C. W.; Park, S.; Kim, J. D. Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf., B 2018, 161, 183-191. doi: 10.1016/j.colsurfb.2017.10.049

    30. [30]

      Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399-404. doi: 10.1039/C3PY00984J

    31. [31]

      Shen, X.; Shi, Y.; Peng, B.; Li, K.; Xiang, J.; Zhang, G.; Liu, Z.; Chen, Y.; Zhang, D. Fluorescent polymeric micelles with tetraphenylethylene moieties and their application for the selective detection of glucose. Macromol. Biosci. 2012, 12, 1583-1590. doi: 10.1002/mabi.v12.11

    32. [32]

      Lim, C. K.; Kim, S.; Kwon, I. C.; Ahn, C. H.; Park, S. Y. Dye-condensed biopolymeric hybrids: Chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging. Chem. Mater. 2009, 21, 5819-5825. doi: 10.1021/cm902379x

    33. [33]

      Lu, H.; Su, F.; Mei, Q.; Zhou, X.; Tian, Y.; Tian, W.; Johnson, R. H.; Meldrum, D. R. A series of poly[N-(2-hydroxypropyl)methacrylamide] copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 890-899. doi: 10.1002/pola.v50.5

    34. [34]

      Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Chi, Z.; Liu, S.; Xu, J.; Wei, Y. Facile preparation and cell imaging applications of fluorescent organic nanoparticles that combine AIE dye and ring-opening polymerization. Polym. Chem. 2014, 5, 318-322. doi: 10.1039/C3PY01143G

    35. [35]

      Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689-693. doi: 10.1039/C3PY01272G

    36. [36]

      Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542-1550. doi: 10.1021/nl070363y

    37. [37]

      Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Nat. Acad. Sci. 2013, 110, 3270. doi: 10.1073/pnas.1216893110

    38. [38]

      Salata, O. V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology. 2004, 2, 3. doi: 10.1186/1477-3155-2-3

    39. [39]

      Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1-16. doi: 10.1146/annurev-bioeng-071811-150124

    40. [40]

      Ding, L.; Zhou, S.; Li, D.; Wu, C.; Xing, Y.; Song, B. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes Pigments 2019, 160, 711-716. doi: 10.1016/j.dyepig.2018.08.063

    41. [41]

      Gauthier, M. A.; Gibson, M. I.; Klok, H. A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 2009, 48, 48-58. doi: 10.1002/anie.200801951

    42. [42]

      Günay, K. A.; Theato, P.; Klok, H. A. Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1-28. doi: 10.1002/pola.26333

    43. [43]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388. doi: 10.1039/c1cs15113d

    44. [44]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940. doi: 10.1021/acs.chemrev.5b00263

    45. [45]

      Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194-51200. doi: 10.1039/C4RA08191A

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1566
  • HTML全文浏览量:  36
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-01-01
  • 网络出版日期:  2019-04-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章