基于FRET-DNA纳米机器的循环信号放大策略用于检测前列腺特异性抗原

李紫滢 李德燕 杨建梅 胡蓉 杨通 杨云慧

引用本文: 李紫滢, 李德燕, 杨建梅, 胡蓉, 杨通, 杨云慧. 基于FRET-DNA纳米机器的循环信号放大策略用于检测前列腺特异性抗原[J]. 分析化学, 2022, 50(7): 1032-1040. doi: 10.19756/j.issn.0253-3820.210686 shu
Citation:  LI Zi-Ying,  LI De-Yan,  YANG Jian-Mei,  HU Rong,  YANG Tong,  YANG Yun-Hui. Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen[J]. Chinese Journal of Analytical Chemistry, 2022, 50(7): 1032-1040. doi: 10.19756/j.issn.0253-3820.210686 shu

基于FRET-DNA纳米机器的循环信号放大策略用于检测前列腺特异性抗原

    通讯作者: 杨通,E-mail:yangtong2018@ynnu.edu.cn; 杨云慧,E-mail:yyhui2002@aliyun.com
  • 基金项目:

    国家自然科学基金项目(Nos.21904114,21765026)和云南省基础研究计划项目(Nos.202001AU070067,202201AT070028)资助。

摘要: 构建了一种基于BHQ-2和Cy5之间荧光共振能量转移(Fluorescence resonance energy transfer,FRET)的DNA纳米机器,用于前列腺特异性抗原(Prostate specific antigen,PSA)的检测。在燃料链(Fuel)的触发下,使整个DNA纳米机器产生熵增效应,引发FRET-DNA纳米机器循环运转,释放出大量的Cy5荧光信号探针,利用信号循环放大策略实现了对PSA的检测。通过琼脂糖凝胶电泳实验考察各步DNA反应杂交情况,优化了Fuel链浓度、孵育时间、适配体链浓度等实验条件。在最佳实验条件下,FRET-DNA纳米机器检测PSA的线性范围为0.1~100 ng/mL,检出限(3σ)低至93.3 pg/mL,与市售的传统PSA酶联免疫分析试剂盒比较,本方法表现出较宽的线性范围和较低的检出限。本方法具有无酶、低背景、高灵敏度、高选择性和操作方便等优势,并成功用于实际血清样品中PSA的检测,在生物医学检测领域具有良好的应用潜能。

English


    1. [1]

      BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.

    2. [2]

      DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.

    3. [3]

      YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.

    4. [4]

      TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.

    5. [5]

      CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.

    6. [6]

      MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.

    7. [7]

      CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.

    8. [8]

      YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.

    9. [9]

      HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.

    10. [10]

      WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.

    11. [11]

      YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.

    12. [12]

      YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.

    13. [13]

      ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.

    14. [14]

      ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.

    15. [15]

      HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.

    16. [16]

      LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.

    17. [17]

      LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.

    18. [18]

      CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.

    19. [19]

      JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.

    20. [20]

      ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.

    21. [21]

      MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.

    22. [22]

      GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.

    23. [23]

      YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.

    24. [24]

      SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.

    25. [25]

      FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.

    26. [26]

      CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.

    27. [27]

      FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.

    28. [28]

      FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  706
  • HTML全文浏览量:  121
文章相关
  • 收稿日期:  2021-08-17
  • 修回日期:  2022-04-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章