Well-defined phosphate yttrium dialkyl complexes for catalytic stereo-controllable 1, 4-polymerization of isoprene

Pusu Yang Hui-Zhen Du Xiang-Yu Zhang Yong-Liang Xia Jun-Tao Sun Qian Peng Bing-Tao Guan

Citation:  Pusu Yang, Hui-Zhen Du, Xiang-Yu Zhang, Yong-Liang Xia, Jun-Tao Sun, Qian Peng, Bing-Tao Guan. Well-defined phosphate yttrium dialkyl complexes for catalytic stereo-controllable 1, 4-polymerization of isoprene[J]. Chinese Chemical Letters, 2022, 33(5): 2402-2406. doi: 10.1016/j.cclet.2021.11.064 shu

Well-defined phosphate yttrium dialkyl complexes for catalytic stereo-controllable 1, 4-polymerization of isoprene

English

  • Polyisoprene (PIP) with well-defined microstructure represents an essential class of functional material in elastomers and plastics [1-3]. The huge demand of them thereby promotes an impressive development of rare-earth metal catalysts [4-6], which achieved the selective synthesis of cis-1, 4-PIP, [7-26] trans-1, 4-PIP [27-33] and 3, 4-PIP [34-39]. It is noteworthy that some catalytic systems were reported to enable a switch of the selectivity by a slight modification of the metal center, ancillary ligand, or cocatalysts [40-54]. For example, Anwander found that the lanthanum fluorenyl half-sandwich catalyst efficiently produced trans-1, 4-PIP (80%), while the lutetium complex gave access to higher cis-1, 4-contents (78.2%) [40]. Arnold discovered that half-sandwich scandium borohydrides complexes with different NHC ligands could swtich the stereoselectivity in the isoprene polymerization (94% trans-1.4 and 80% cis-1.4) [41]. Hou and Zhang reported that the yttrium amidinate complex, by addition of AlMe3, were transformed to heterotrinuclear Y/Al complex, which could dramatically switch the regio- and stereoselectivity of isoprene polymerization (from 3, 4-isospecific to 1, 4-cis selective) [46, 47]. In these cases, the precise control on the regio- and stereoselectivity definitely displays the state of the art in catalyst design. A tailor-made catalyst with new structure, good stability, high catalytic activity and selectivity, however, is still highly desired in both academic and industrial fields.

    Dialkyl rare-earth complexes bearing a monoanionic ancillary ligand have recently drawn much attention, serving as efficient catalysts for the polymerization and functionalization reactions of alkenes [55-60]. Most of these ligands feature delocalized carbanions or multidentate nitrogen anions structures (Scheme 1A). According to the strong oxophilicity of rare-earth metals, oxyanions are supposed to have great potential for acting as suited ancillary ligands [61-75]. Based on this assumption, Evans synthesized dialkyl rare-earth complexes adopting steric bulky 2, 6-di‑tert-butylphenol as an ancillary ligand [61, 62]. Subsequently, functionalized phenols [63-67], silanols [68, 69], alkoxy NHCs [70, 71] were also introduced into the ancillary ligand family (Scheme 1B). Anwander reported the synthesis of various alkylated carboxylate rare-earth complexes that catalyzed cis-1, 4-polymerization of isoprene [72]. These oxyanion ligands moved down a new path for the synthesis of dialkyl rare-earth complexes, whereas most of these complexes were not stable enough, presumably because of the easy ligand redistribution and complex aggregation reactions. Nevertheless, further studies about dialkyl rare-earth complexes bearing oxyanion ligands remain sluggish due to a lack of ligand diversity. Although some lanthanide carboxylates [76-79] and phosphates [80-85] were used as catalyst procursors in polymerization process, the well-defined alkyl complexes are yet undeveloped and the role of ligands is still obscure. Thus, we are quite curious about that if phosphates could be applied as anion ligands for dialkyl rare-earth complexes; a positive answer to this question could provide further insight about oxyanion ancillary ligands and also an attractive alternative catalyst. Herein, we reported the synthesis of well-defined phosphate yttrium dialkyl complexes and their catalytic application in stereo-controllable 1, 4-polymerization of isoprene (Scheme 1C).

    Scheme 1

    Scheme 1.  Examples of rare-earth dialkyl complexes.

    The oxophilicity of rare-earth metals would definitely provide a strong interaction between the metal ion and the phosphate anion. This strong bonding, however, together with the small steric hindrance of the oxyanions, would probably result in the bridging interaction and ligand redistribution. To avoid the possible side reactions, we proposed to start with tris(aminobenzyl) yttrium complex, whose alkyl anion has a "built-in" chelating amino group. Thinking of the widely used N-heterocyclic carbene ligands, we synthesized two N-heterocyclic phosphorodiamidic acids (NHPAs) bearing similar skeleton structures and tunable steric parameters [86, 87]. The acid-base reaction between NHPAs and Y(CH2C6H4NMe2-o)3 took place smoothly at 60 ℃ in toluene and afforded the N-heterocyclic phosphate yttrium bis(aminobenzyl) complexes PYR2 after 3 h (Scheme 2). Both complexes were fully characterized by 1H, 13C and 31P NMR spectroscopy, and their structures in solid state were determined by single-crystal X-ray diffraction (XRD). These characterizations reveal the similar structures of the two phosphate yttrium complexes, as shown in Fig. 1. The phosphate anion is bonded to the yttrium center in κ2 fashion through two oxygen atoms. The yttrium atom is well located on the OPO rigid frame to form a planar quadrilateral. In a simplified view, the phosphate ligand creates a well-defined steric pocket, along with the κ2 coordination from the aminobenzyl ligands, conducing to enhance the stability of PYR2. Through comparison with the two phosphate yttrium complexes, it is showed that the Y-O bond lengths in P2YR2 (2.306(2) Å) are longer than those in P1YR2 (2.282(2) Å). We speculated that the larger steric hindrance from the isopropyl groups increases the distance between phosphate and yttrium atom.

    Scheme 2

    Scheme 2.  Synthesis of phosphate yttrium dialkyl complexes.

    Figure 1

    Figure 1.  ORTEP structure of PYR2 complexes with thermal ellipsoids set at 30% probability. Hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: (P1YR2, left) Y1-O1 2.282(2), Y1-O2 2.277(2), Y1-C21 2.435(3), Y1-C30 2.435(3), Y1-N3 2.533(2), Y1-N4 2.522(2), O1-Y1-O2 63.63(8), P1-O1-Y1 96.19(1), P1-O2-Y1 96.12(1), O1-P1-O2 103.99(1). (P2YR2, right) Y1-O1 2.306(2), Y1-O2 2.300 (2), Y1-C27 2.439(3), Y1-C36 2.436(3), Y1-N3 2.525(2), Y1-N4 2.533(2), O1-Y1-O2 62.86(6), P1-O1-Y1 96.23(8), P1-O2-Y1 96.48(8), O1-P1-O2 104.30(1).

    As part of our continuing investigations into isoprene polymerization, we then used the PYR2 as catalysts for further exploration. The neutral P1YR2 alone proved to be inactive for the isoprene polymerization (Table 1, entry 1). However, once activited with 1 equiv. of borate reagent [Ph3C][B(C6F5)4], P1YR2 at room temperature demonstrated high catalytic activity: 1000 equiv. of isoprene were converted quantitatively into PIP within 20 min (entry 2). Remarkably, the polymer product features a high cis-1, 4 content (93.7%). GPC curve indicated that the PIP obtained is unimodal with a Mn of 2.6 × 105 and a narrow molecular weight distribution (PDI = 1.4). The catalytic polymerization under lower temperature took place smoothly and gave PIP with even higher cis-1, 4 content (96.5%) as well as higher molecular weight (Mn = 3.6 × 105) (entry 3). We next carried out the catalytic polymerization with various [Isoprene]/[P1YR2] ratios varying from 600 to 5000 (entries 4–9). All the reactions produced PIP with high efficiency (yields > 98%) and excellent selectivity (cis-1, 4 selectivity: 92.6%−96.5%). Furthermore, the molecular weight of the resultant PIP increases linearly with the amount of the isoprene monomers (see Supporting information for details), while the molecular weight distribution still keeps narrow (1.4–1.6). The phosphate yttrium complex here displayed a very high catalytic activity and thus provided an approach for the synthesis of high-molecular-weight cis-1, 4-PIP (Mn up to 1.06 × 106). Considering the important roles of alkylaluminum compounds in polymerization, we further carried out the catalytic polymerization reaction in the presence of trialkylaluminum reagents (entries 10 and 11). Al(iBu)3, a well-known chain transfer reagent, led to the decrease of the molecular-weight (Mn = 1.9 × 105), as expected. Unlike some known findings [46, 48] that addition of AlMe3 could increase the cis-1, 4 content of PIP, the addition of 5 equiv. of AlMe3 herein greatly increased the trans-1, 4 content (44.1%).

    Table 1

    Table 1.  P1YR2 catalyzed cis-1, 4-polymerization of isoprene. a
    DownLoad: CSV

    The catalytic system P2YR2/[Ph3C][B(C6F5)]4 exhibited lower cis-1, 4 selectivity in the polymerization of isoprene, but higher initiation efficiency (42.1%), compared to the catalytic system P1YR2/[Ph3C][B(C6F5)]4 (25.9%), producing the PIP product with 83.3% cis-1, 4, 5.3% trans-1, 4 and 11.4% 3, 4 contents (Table 2, entry 1). This result suggested that the steric effect of the two ortho-substituted N-aryl rings might be a contributing factor of the cis-1, 4 selectivity. The bulky o-isopropyl in N-aryl rings led to the decrease of cis-1, 4 selectivity [11, 16]. The catalytic system containing 5 equiv. of AlMe3 surprisingly switched the stereoselectivity from cis-1, 4 to trans-1, 4-polymerization, thus affording the polymers with contents of 89.4% trans-1, 4 units (entry 6). The trans-1, 4-polymerization took place much more slowly (90 min). The significantly increased molecular weight (Mn = 3.6 × 105) revealed an obvious decreased efficiency of the catalyst (18.7%), which hinted a dramatic structure change of the catalytic species. We speculated that the heteronuclear Y/Al complex formed in-situ might be the possible cataytic species in the trans-1, 4-polymerization [9, 28, 46]. To find out more details, we carefully examined the polymerization with different [AlMe3]/[P2YR2] ratios. 1 or 2 equiv. of AlMe3 did not obviously change the regioselectivity (entries 2 and 3). Using 3 equiv. of AlMe3 as additive resulted in a noticeable increase of the trans-1, 4 selectivity from 5.3% to 75.0% (entry 4). When 4 equiv. of AlMe3 or more was added, the PIP was obtained with higher trans-1, 4 content (85.1%−92%) (entries 5 and 7). It is suggested that 4 equiv. of AlMe3 was necessary for the formation of the heterotrinuclear Y/Al complex [46]. It is noteworthy that 10 equiv. of AlMe3 as additive gave the PIP with lower molecular weight (Mn = 1.3 × 105) but similar narrow molecular weight distribution (PDI = 1.5), suggesting that the excess amount of AlMe3 may act as a chain transfer reagent to interrupt the growing polymer chain and tune the molecular weight. For comparison, the PIP obtained with the system P2YR2/[Ph3C][B(C6F5)]4/AlEt3 or Al(iBu)3 failed to achieve high trans-1, 4 contents (entries 8 and 9). This observation showed that the trans-1, 4 selectivity might be influenced by the steric effect of the aluminum alkyls (AlMe3 > AlEt3 > Al(iBu)3) [21]. Control experiments were conducted that the isoprene polymerization could not be initiated without either borate reagent or P2YR2, indicating that the cationic Y/Al species may account for the trans-1, 4-polymerization of isoprene (entries 10 and 11). To gain further insight into the possible heterotrinuclear Y/Al species, we carried out the reaction between phosphate yttrium dialkyl complexes and 4 equiv. of AlMe3. A crystal of a phosphate bis(tetramethylaluminate) yttrium complex [P1Y(AlMe4)2]2 suit for X-ray diffraction analysis was surprisingly obtained (Fig. 2). Compared to the crystal structure of P1YR2, this dimer complex [P1Y(AlMe4)2]2 features a quite different coordination environment around the yttrium metal center. The huge change of the catalyst structure might result in the different coordination and insertion mode of isoprene, leading to trans-1, 4-polymerization of isoprene (Table 1, entry 11). The synthesis and isolation of heteronuclear Y/Al complex [P2Y(AlMe4)2]2 and catinoic species of [P1Y(AlMe4)2]2 were tried but failed, possibly because of their thermal instability.

    Table 2

    Table 2.  P2YR2 catalyzed 1, 4-polymerization of isoprene. a
    DownLoad: CSV

    Figure 2

    Figure 2.  ORTEP structure of [P1Y(AlMe4)2]2 with thermal ellipsoids set at 30% probability. Hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Y1-O1 2.188(2), Y1-O4 2.194(2), Y1-C1 2.621(4), Y1- C2 2.527(4), Al1-C1 2.062 (4), Al1-C2 2.074(4), O1-Y1-O4 95.883(8), O1-P1-O2 108.205(1), P1-O1-Y1 161.082(1), C1-Y1-C2 82.598(1), C1-Al1-C2 110.499(2), C3-Al1- C4 118.280(2).

    In conclusion, N-heterocyclic phosphate ancillary ligand was designed and proved to be suitable for the synthesis and isolation of yttrium dialkyl complexes, which could be conveniently prepared via the acid-base reactions between tris(aminobenzyl) yttrium complex and N-heterocyclic phosphoric acid. Activated by [Ph3C][B(C6F5)]4, the yttrium complexes PYR2 exhibit high catalytic activities for cis-1, 4-selective (up to 96.5%) polymerization of isoprene. The stereoselectivity was dramatically switched from cis-1, 4 to trans-1, 4-polymerization (up to 92.0%) when using AlMe3 as an additive. Considering various easily available phosphoric acids including the chiral ones, we could expect a nice synthetic value and diversified catalytic applications of phosphate ligated metal complexes in near future. Along this line, the synthesis of N-heterocyclic phosphate complexes with other metals and also with chiral phosphoric acids are currently ongoing in our laboratory.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We gratefully acknowledge the support from the Fudan University. We thank Prof. Li Pan (Tianjin Univ.), Prof. Jian-Hua Cheng (CIAC, China) for their helpful suggestions. This project was supported by National Natural Science Foundation of China (Nos. 21890722 and 21950410519), National Natural Science Foundation of Tianjin (No. 19JCYBJC20100).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.064.


    1. [1]

      E. Ceauşescu, Stereospecific Polymerization of Isoprene, 1st ed., Pergamon, Oxford, 1983.

    2. [2]

      J. Song, B. Huang, D. Yu, J. Appl. Polym. Sci. 82 (2001) 81–89. doi: 10.1002/app.1826

    3. [3]

      J.E. Puskas, E. Gautriaud, A. Deffieux, J.P. Kennedy, Prog. Polym. Sci. 31 (2006) 533–548. doi: 10.1016/j.progpolymsci.2006.05.002

    4. [4]

      L. Porri, A. Giarrusso, 5-Conjugated diene polymerization, In: G. Allen, J.C. Bevington (Eds. ), Comprehensive Polymer Science and Supplements, Pergamon, Amsterdam, 1989, pp. 53–108.

    5. [5]

      Z. Hou, Y. Wakatsuki, Coord. Chem. Rev. 231 (2002) 1–22. doi: 10.1016/S0010-8545(02)00111-X

    6. [6]

      Z. Zhang, D. Cui, B. Wang, B. Liu, Y. Yang, Polymerization of 1, 3-conjugated dienes with rare-earth metal precursors. In: P.W. Roesky (Ed. ), Molecular Catalysis of Rare-Earth Elements, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 49–108.

    7. [7]

      S. Arndt, K. Beckerle, P.M. Zeimentz, T.P. Spaniol, J. Okuda, Angew. Chem. Int. Ed. 44 (2005) 7473–7477. doi: 10.1002/anie.200502915

    8. [8]

      L. Zhang, T. Suzuki, Y. Luo, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 46 (2007) 1909–1913. doi: 10.1002/anie.200604348

    9. [9]

      M. Zimmermann, N. Å. Frøystein, A. Fischbach, et al., Chem. Eur. J. 13 (2007) 8784–8800. doi: 10.1002/chem.200700534

    10. [10]

      Y. Yang, B. Liu, K. Lv, et al., Organometallics 26 (2007) 4575–4584. doi: 10.1021/om7003095

    11. [11]

      W. Gao, D. Cui, J. Am. Chem. Soc. 130 (2008) 4984–4991. doi: 10.1021/ja711146t

    12. [12]

      K. Lv, D. Cui, Organometallics 29 (2010) 2987–2993. doi: 10.1021/om1002039

    13. [13]

      D. Li, S. Li, D. Cui, X. Zhang, Organometallics 29 (2010) 2186–2193. doi: 10.1021/om100100r

    14. [14]

      Y. Luo, S. Fan, J. Yang, J. Fang, P. Xu, Dalton Trans. 40 (2011) 3053–3059. doi: 10.1039/c0dt01241f

    15. [15]

      Y. Pan, T. Xu, G. Yang, K. Jin, X. Lu, Inorg. Chem. 52 (2013) 2802–2808. doi: 10.1021/ic300976p

    16. [16]

      J. Zhang, Z. Hao, W. Gao, et al., Chem. Asian J. 8 (2013) 2079–2087. doi: 10.1002/asia.201300581

    17. [17]

      S. Sun, H. Ouyang, Y. Luo, et al., Dalton Trans. 42 (2013) 16355–16364. doi: 10.1039/c3dt52014e

    18. [18]

      L. Li, C. Wu, D. Liu, S. Li, D. Cui, Organometallics 32 (2013) 3203–3209. doi: 10.1021/om400105t

    19. [19]

      S. Liu, G. Du, J. He, et al., Macromolecules 47 (2014) 3567–3573. doi: 10.1021/ma500740m

    20. [20]

      L. Guo, X. Zhu, S. Zhou, et al., Dalton Trans. 43 (2014) 6842–6847. doi: 10.1039/C4DT00242C

    21. [21]

      L. Guo, X. Zhu, G. Zhang, et al., Inorg. Chem. 54 (2015) 5725–5731. doi: 10.1021/acs.inorgchem.5b00308

    22. [22]

      M. Deng, S. Chi, Y. Luo, New J. Chem. 39 (2015) 7575–7581. doi: 10.1039/C5NJ00279F

    23. [23]

      L. Shi, Q. Su, J. Chen, X. Li, Y. Luo, Dalton Trans. 45 (2016) 1391–1397. doi: 10.1039/C5DT03937A

    24. [24]

      P. Zhang, H. Liao, H. Wang, et al., Organometallics 36 (2017) 2446–2451. doi: 10.1021/acs.organomet.7b00322

    25. [25]

      M. Bonath, C.O. Hollfelder, D. Schädle, et al., Eur. J. Inorg. Chem. 2017 (2017) 4683–4692. doi: 10.1002/ejic.201700730

    26. [26]

      C. Yu, P. Zhang, F. Gao, S. Zhang, X. Li, Polym. Chem. 9 (2018) 603–610. doi: 10.1039/C7PY01915G

    27. [27]

      F. Bonnet, M. Visseaux, D. Barbier-Baudry, E. Vigier, M.M. Kubicki, Chem. Eur. J. 10 (2004) 2428–2434. doi: 10.1002/chem.200305595

    28. [28]

      M. Zimmermann, K.W. Törnroos, R. Anwander, Angew. Chem. Int. Ed. 47 (2008) 775–778. doi: 10.1002/anie.200703514

    29. [29]

      L. Annunziata, M. Duc, J. Carpentier, Macromolecules 44 (2011) 7158–7166. doi: 10.1021/ma2014595

    30. [30]

      W. Rong, D. Liu, H. Zuo, et al., Organometallics 32 (2013) 1166–1175. doi: 10.1021/om300967h

    31. [31]

      H. Liu, J. He, Z. Liu, et al., Macromolecules 46 (2013) 3257–3265. doi: 10.1021/ma4005549

    32. [32]

      L.N. Jende, C. Maichle-Mössmer, R. Anwander, Chem. Eur. J. 19 (2013) 16321–16333. doi: 10.1002/chem.201302388

    33. [33]

      S. Fadlallah, M. Terrier, C. Jones, et al., Organometallics 35 (2016) 456–461. doi: 10.1021/acs.organomet.5b00877

    34. [34]

      L. Zhang, Y. Luo, Z. Hou, J. Am. Chem. Soc. 127 (2005) 14562–14563. doi: 10.1021/ja055397r

    35. [35]

      G. Du, Y. Wei, L. Ai, et al., Organometallics 30 (2011) 160–170. doi: 10.1021/om100971d

    36. [36]

      A.A. Kissel, D.M. Lyubov, T.V. Mahrova, et al., Dalton Trans. 42 (2013) 9211–9225. doi: 10.1039/c3dt33108c

    37. [37]

      B. Liu, L. Li, G. Sun, et al., Macromolecules 47 (2014) 4971–4978. doi: 10.1021/ma501085c

    38. [38]

      C. Yao, D. Liu, P. Li, et al., Organometallics 33 (2014) 684–691. doi: 10.1021/om400925a

    39. [39]

      F. Kong, M. Li, X. Zhou, L. Zhang, RSC Adv. 7 (2017) 29752–29761. doi: 10.1039/C7RA04524G

    40. [40]

      D. Diether, K. Tyulyunov, C. Maichle-Mössmer, R. Anwander, Organometallics 36 (2017) 4649–4659. doi: 10.1021/acs.organomet.7b00543

    41. [41]

      F. Bonnet, C.E. Jones, S. Semlali, et al., Dalton Trans. 42 (2013) 790–801. doi: 10.1039/C2DT31624B

    42. [42]

      Y. Yang, K. Lv, L. Wang, Y. Wang, D. Cui, Chem. Commun. 46 (2010) 6150–6152. doi: 10.1039/c0cc00297f

    43. [43]

      R. Tanaka, K. Yuuya, H. Sato, et al., Polym. Chem. 7 (2016) 1239–1243. doi: 10.1039/C5PY01872B

    44. [44]

      N.Y. Rad'Kova, A.O. Tolpygin, V.Y. Rad'Kov, et al., Dalton Trans. 45 (2016) 18572–18584. doi: 10.1039/C6DT03074B

    45. [45]

      R. Tanaka, Y. Shinto, Y. Nakayama, T. Shiono, Catalysts7 (2017) 284. doi: 10.3390/catal7100284

    46. [46]

      L. Zhang, M. Nishiura, M. Yuki, Y. Luo, Z. Hou, Angew. Chem., Int. Ed. 47 (2008) 2642–2645. doi: 10.1002/anie.200705120

    47. [47]

      X. Yu, Q. You, X. Zhou, L. Zhang, ACS Catal. 8 (2018) 4465–4472. doi: 10.1021/acscatal.8b00600

    48. [48]

      C. Döring, W.P. Kretschmer, R. Kempe, Eur. J. Inorg. Chem. 2010 (2010) 2853–2860. doi: 10.1002/ejic.201000097

    49. [49]

      L. Wang, D. Liu, D. Cui, Organometallics 31 (2012) 6014–6021. doi: 10.1021/om300049h

    50. [50]

      F. Chen, S. Fan, Y. Wang, J. Chen, Y. Luo, Organometallics 31 (2012) 3730–3735. doi: 10.1021/om3002119

    51. [51]

      L. Luconi, D.M. Lyubov, A. Rossin, et al., Organometallics 33 (2014) 7125–7134. doi: 10.1021/om500918y

    52. [52]

      B. Liu, G. Sun, S. Li, D. Liu, D. Cui, Organometallics 34 (2015) 4063–4068. doi: 10.1021/acs.organomet.5b00502

    53. [53]

      J. Chen, Y. Gao, S. Xiong, et al., ACS Catal. 7 (2017) 5214–5219. doi: 10.1021/acscatal.7b01621

    54. [54]

      G. Zhang, S. Wang, X. Zhu, et al., Organometallics 36 (2017) 3812–3822. doi: 10.1021/acs.organomet.7b00575

    55. [55]

      A.A. Trifonov, D.M. Lyubov, Coord. Chem. Rev. 340 (2017) 10–61. doi: 10.1016/j.ccr.2016.09.013

    56. [56]

      M. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res. 48 (2015) 2209–2220. doi: 10.1021/acs.accounts.5b00219

    57. [57]

      S. Arndt, J. Okuda, Adv. Synth. Catal. 347 (2005) 339–354. doi: 10.1002/adsc.200404269

    58. [58]

      P.M. Zeimentz, S. Arndt, B.R. Elvidge, J. Okuda, Chem. Rev. 106 (2006) 2404–2433. doi: 10.1021/cr050574s

    59. [59]

      F.T. Edelmann, Chem. Soc. Rev. 41 (2012) 7657–7672. doi: 10.1039/c2cs35180c

    60. [60]

      M. Nishiura, Z. Hou, Nat. Chem. 2 (2010) 257–268. doi: 10.1038/nchem.595

    61. [61]

      W.J. Evans, R.N.R. Broomhall-Dillard, J.W. Ziller, Organometallics 15 (1996) 1351–1355. doi: 10.1021/om9508400

    62. [62]

      M.V. Butovskii, O.L. Tok, V. Bezugly, F.R. Wagner, R. Kempe, Angew. Chem. Int. Ed. 50 (2011) 7695–7698. doi: 10.1002/anie.201102363

    63. [63]

      A. Lara-Sanchez, A. Rodriguez, D.L. Hughes, M. Schormann, M. Bochmann, J. Organomet. Chem. 663 (2002) 63–69. doi: 10.1016/S0022-328X(02)01657-1

    64. [64]

      D.J.H. Emslie, W.E. Piers, M. Parvez, R. McDonald, Organometallics 21 (2002) 4226–4240. doi: 10.1021/om020382c

    65. [65]

      S.C. Marinescu, T. Agapie, M.W. Day, J.E. Bercaw, Organometallics 26 (2007) 1178–1190. doi: 10.1021/om0608612

    66. [66]

      G. Paolucci, M. Bortoluzzi, M. Napoli, P. Longo, J. Mol. Catal. A: Chem. 287 (2008) 121–127. doi: 10.1016/j.molcata.2008.03.009

    67. [67]

      G. Paolucci, M. Bortoluzzi, S. Milione, A. Grassi, Inorg. Chim. Acta362 (2009) 4353–4357. doi: 10.1016/j.ica.2009.01.020

    68. [68]

      N. Dettenrieder, H.M. Dietrich, C. Maichle-Mössmer, R. Anwander, Chem. Eur. J. 22 (2016) 13189–13200. doi: 10.1002/chem.201602424

    69. [69]

      B.R. Elvidge, S. Arndt, T.P. Spaniol, J. Okuda, Dalton Trans. (2006) 890–901.

    70. [70]

      S. Long, B. Wang, H. Xie, et al., New J. Chem. 39 (2015) 7682–7687. doi: 10.1039/C5NJ00737B

    71. [71]

      P.L. Arnold, Z.R. Turner, R. Bellabarba, R.P. Tooze, J. Am. Chem. Soc. 133 (2011) 11744–11756. doi: 10.1021/ja204209t

    72. [72]

      A. Fischbach, F. Perdih, E. Herdtweck, R. Anwander, Organometallics 25 (2006) 1626–1642. doi: 10.1021/om060052i

    73. [73]

      C.S. Tredget, S.C. Lawrence, B.D. Ward, et al., Organometallics 24 (2005) 3136–3148. doi: 10.1021/om050209r

    74. [74]

      W. Miao, S. Li, D. Cui, B. Huang, J. Organomet. Chem. 692 (2007) 3823–3834. doi: 10.1016/j.jorganchem.2007.05.032

    75. [75]

      S. Ge, S. Bambirra, A. Meetsma, B. Hessen, Chem. Commun. (2006) 3320–3322. doi: 10.1039/b606384e

    76. [76]

      W.J. Evans, D.G. Giarikos, J.W. Ziller, Organometallics 20 (2001) 5751–5758. doi: 10.1021/om010887n

    77. [77]

      A. Fischbach, F. Perdih, P. Sirsch, W. Scherer, R. Anwander, Organometallics 21 (2002) 4569–4571. doi: 10.1021/om0205389

    78. [78]

      W.J. Evans, D.G. Giarikos, Macromolecules 37 (2004) 5130–5132. doi: 10.1021/ma034925l

    79. [79]

      D.M. Roitershtein, A.A. Vinogradov, A.A. Vinogradov, et al., Organometallics 32 (2013) 1272–1286. doi: 10.1021/om301020r

    80. [80]

      P. Laubry, F. Barbotin, US20050130835 A1[P], 2006.

    81. [81]

      R. Anwander, O. Nuyken, Neodymium Based Ziegler Catalysts: Fundamental Chemistry, Springer, Berlin, 2006.

    82. [82]

      I.E. Nifant'Ev, A.N. Tavtorkin, A.V. Shlyahtin, et al., Dalton Trans. 42 (2013) 1223–1230. doi: 10.1039/C2DT31505J

    83. [83]

      I.E. Nifant'ev, A.N. Tavtorkin, S.Y.A. Korchagina, et al., Appl. Catal. A478 (2014) 219–227. doi: 10.1016/j.apcata.2014.04.007

    84. [84]

      S.K. Gupta, G.A. Bhat, R. Murugavel, Inorg. Chem. 56 (2017) 9071–9083. doi: 10.1021/acs.inorgchem.7b01100

    85. [85]

      I. Carson, M.R. Healy, E.D. Doidge, et al., Coord. Chem. Rev. 335 (2017) 150–171. doi: 10.1016/j.ccr.2016.11.018

    86. [86]

      H. Huang, J.Y. Kang, Org. Lett. 19 (2017) 5988–5991. doi: 10.1021/acs.orglett.7b03019

    87. [87]

      C. Kutzbach, L. Jaenicke, J. LiebigsAnn. Chem. 692 (1966) 26–41. doi: 10.1002/jlac.19666920105

  • Scheme 1  Examples of rare-earth dialkyl complexes.

    Scheme 2  Synthesis of phosphate yttrium dialkyl complexes.

    Figure 1  ORTEP structure of PYR2 complexes with thermal ellipsoids set at 30% probability. Hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: (P1YR2, left) Y1-O1 2.282(2), Y1-O2 2.277(2), Y1-C21 2.435(3), Y1-C30 2.435(3), Y1-N3 2.533(2), Y1-N4 2.522(2), O1-Y1-O2 63.63(8), P1-O1-Y1 96.19(1), P1-O2-Y1 96.12(1), O1-P1-O2 103.99(1). (P2YR2, right) Y1-O1 2.306(2), Y1-O2 2.300 (2), Y1-C27 2.439(3), Y1-C36 2.436(3), Y1-N3 2.525(2), Y1-N4 2.533(2), O1-Y1-O2 62.86(6), P1-O1-Y1 96.23(8), P1-O2-Y1 96.48(8), O1-P1-O2 104.30(1).

    Figure 2  ORTEP structure of [P1Y(AlMe4)2]2 with thermal ellipsoids set at 30% probability. Hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Y1-O1 2.188(2), Y1-O4 2.194(2), Y1-C1 2.621(4), Y1- C2 2.527(4), Al1-C1 2.062 (4), Al1-C2 2.074(4), O1-Y1-O4 95.883(8), O1-P1-O2 108.205(1), P1-O1-Y1 161.082(1), C1-Y1-C2 82.598(1), C1-Al1-C2 110.499(2), C3-Al1- C4 118.280(2).

    Table 1.  P1YR2 catalyzed cis-1, 4-polymerization of isoprene. a

    下载: 导出CSV

    Table 2.  P2YR2 catalyzed 1, 4-polymerization of isoprene. a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  892
  • HTML全文浏览量:  42
文章相关
  • 发布日期:  2022-05-15
  • 收稿日期:  2021-07-23
  • 接受日期:  2021-11-23
  • 修回日期:  2021-11-15
  • 网络出版日期:  2021-11-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章