The Influence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations

Kati. FINZEL Patrick. BULTINCK

Citation:  FINZEL Kati., BULTINCK Patrick.. The Influence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 650-655. doi: 10.3866/PKU.WHXB201710251 shu

The Influence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations

    通讯作者: FINZELKati., Kati.Finzel@UGent.be
摘要: In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other. This aspect is first derived in an orbital-free context. It is shown that the total Fermi potential depends on the density only, the individual parts, the Pauli kinetic energy and the exchange-correlation energy, however, are orbital dependent and as such mutually influence each other. The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy. The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the order of a few Hartrees. For chemical purposes, however, the energetic performance as a function of the nuclear coordinates is much more important than total energies. Therefore, the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide. The data reveals that, the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances. Therefore, the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.

English

    1. [1]

      Ho, G. S.; Lignères, V. L.; Carter, E. A. Comput. Phys. Comm. 2008, 179, 839. doi: 10.1016/j.cpc.2008.07.002

    2. [2]

      Karasiev, V.; Sjostrom, T.; Trickey, S. B. Computer Phys. Commun. 2014, 185, 3240. doi: 10.1016/j.cpc.2014.08.023

    3. [3]

      Lehtomäki, J.; Makkonen, I.; Caro, M. A.; Harju, A.; Lopez-Acevedo, O. J. Chem. Phys. 2014, 141, 234102. doi: 10.1063/1.4903450

    4. [4]

      Ghosh, S.; Suryanarayana, P. J. Comput. Phys. 2016, 307, 634. doi: 10.1016/j.jcp.2015.12.027

    5. [5]

      Thomas, L. H. Proc. Cambridge Philos. Soc. 1927, 23, 542. doi: 10.1017/S0305004100011683

    6. [6]

      Fermi, E. Zeitschrift für Physik 1928, 48, 73. doi: 10.1007/BF01351576

    7. [7]

      Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864

    8. [8]

      Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. doi: 10.1103/PhysRev.140.A1133

    9. [9]

      Ayers, P. W.; Liu, S. Phys. Rev. A 2007, 75, 022514. doi: 10.1103/PhysRevA.75.022514

    10. [10]

      Ludeña, E. V.; Illas, F.; Ramirez-Solis, A. Int. J. Mod. Phys. B 2008, 22, 4642. doi: 10.1142/S0217979208050395

    11. [11]

      Kryachko, E. S.; Ludeña, E. V. Phys. Rep. 2014, 544, 123. doi: 10.1016/j.physrep.2014.06.002

    12. [12]

      von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700

    13. [13]

      Kirzhnits, D. A. Sov. Phys. JETP 1957, 5, 64.

    14. [14]

      Hodges, C. H. Can. J. Phys. 1973, 51, 1428. doi: 10.1139/p73-189

    15. [15]

      Murphy, D. R. Phys. Rev. A 1981, 24, 1682. doi: 10.1103/PhysRevA.24.1682

    16. [16]

      Lee, H.; Lee, C.; Parr, R. G. Phys. Rev. A 1991, 44, 768. doi: 10.1103/PhysRevA.44.768

    17. [17]

      Fuentealba, P.; Reyes, O. Chem. Phys. Lett. 1995, 232, 31. doi: 10.1016/0009-2614(94)01321-L

    18. [18]

      Tran, F.; Wesolowski, T. A. Int. J. Quantum Chem. 2002, 89, 441. doi: 10.1002/qua.10306

    19. [19]

      Lee, D.; Constantin, L. A.; Perdew, J. P.; Burke, K. J. Chem. Phys. 2009, 130, 034107. doi: 10.1063/1.3059783

    20. [20]

      Karasiev, V.; Chakraborty, D.; Trickey, S. B. Many-Electron Approaches in Physics, Chemistry and Mathematic; Delle Site, L.; Bach, V. Eds.; Springer Verlag: Heidelberg, Germany, 2014; pp. 113-134.

    21. [21]

      Karasiev, V.; Trickey, S. B. Adv. Quantum Chem. 2015, 71, 221. doi: 10.1016/bs.aiq.2015.02.004

    22. [22]

      Ghiringhelli, L. M.; Delle Site, L. Phys. Rev. B 2008, 77, 073104. doi: 10.1103/PhysRevB.77.073104

    23. [23]

      Ghiringhelli, L. M.; Hamilton, I. P.; Delle Site, L. J. Chem. Phys. 2010, 132, 014106. doi: 10.1063/1.3280953

    24. [24]

      Trickey, S.; Karasiev, V. V.; Vela, A. Phys. Rev. B 2011, 84, 075146. doi: 10.1103/PhysRevB.84.075146

    25. [25]

      Wang, Y. A.; Carter, E. A. Theoretical Methods in Condensed Phase Chemistry; Schwarz, S. D. Ed.; Kluwer: New York, NY, USA, 2000; pp. 117--184.

    26. [26]

      Shin, I.; Carter, E. A. J. Chem. Phys. 2014, 140, 18A531. doi: 10.1063/1.4869867

    27. [27]

      Ayers, P. W.; Lucks, J. B.; Parr, R. G. Acta Chimica et Physica Debrecina 2002, 34, 223.

    28. [28]

      Bartell, L. S.; Brockway, L. O. Phys. Rev. 1953, 90, 833. doi: 10.1103/PhysRev.90.833

    29. [29]

      Waber, J. T.; Cromer, D. T. J. Chem. Phys. 1965, 42, 4116. doi: 10.1063/1.1695904

    30. [30]

      Weinstein, H.; Politzer, P.; Srebrenik, S. Theor. Chim. Acta 1975, 38, 159. doi: 10.1007/BF00581473

    31. [31]

      Schmider, H.; Sagar, R.; Smith, V. H., Jr. Can. J. Chem. 1992, 70, 506. doi: 10.1139/v92-072

    32. [32]

      Yang, W. Phys. Rev. A 1986, 34, 4575. doi: 10.1103/PhysRevA.34.4575

    33. [33]

      Dreizler, R. M.; Gross, E. K. U. Density Functional Theory; Springer Verlang: Berlin Heidelberg, Germany, 1990.

    34. [34]

      March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4

    35. [35]

      Levy, M.; Ou-Yang, H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625

    36. [36]

      Nagy, A. Acta Phys. Hung. 1991, 70, 321. doi: 10.1007/BF03054145

    37. [37]

      Nagy, A.; March, N. H. Int. J. Quantum Chem. 1991, 39, 615. doi: 10.1002/qua.560390408

    38. [38]

      Nagy, A.; March, N. H. Phys. Chem. Liq. 1992, 25, 37. doi: 10.1080/00319109208027285

    39. [39]

      Holas, A.; March, N. H. Int. J. Quantum Chem. 1995, 56, 371. doi: 10.1002/qua.560560423

    40. [40]

      Amovilli, C.; March, N. H. Int. J. Quantum Chem. 1998, 66, 281. doi: 10.1002/(SICI)1097-461X(1998)66:4 <281::AID-QUA3>3.0.CO;2-R

    41. [41]

      Nagy, A. Chem. Phys. Lett. 2008, 460, 343. doi: 10.1016/j.cplett.2008.05.077

    42. [42]

      Nagy, A. Int. J. Quantum Chem. 2010, 110, 2117. doi: 10.1002/qua.22497

    43. [43]

      Nagy, A. J. Chem. Phys. 2011, 135, 044106. doi: 10.1063/1.3607313

    44. [44]

      Finzel, K. Int. J. Quantum Chem. 2015, 115, 1629. doi: 10.1002/qua.24986

    45. [45]

      Finzel, K. J. Chem. Phys. 2016, 144, 034108. doi: 10.1063/1.4940035

    46. [46]

      Finzel, K. Theor. Chem. Acc. 2016, 135, 87. doi: 10.1007/s00214-016-1850-8

    47. [47]

      Finzel, K. Int. J. Quantum Chem. 2016, 116, 1261. doi: 10.1002/qua.25169

    48. [48]

      Finzel, K.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 255. doi: 10.1007/s00214-016-2013-7

    49. [49]

      Finzel, K.; Ayers, P. W. Int. J. Quantum Chem. 2017, 117, E25364. doi: 10.1002/qua.25364

    50. [50]

      Finzel, K.; Baranov, A. I. Int. J. Quantum Chem. 2016, 117, 40. doi: 10.1002/qua.25312

    51. [51]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.

    52. [52]

      Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010

    53. [53]

      Bartolotti, L. J.; Acharya, P. K. J. Chem. Phys. 1982, 77, 4576. doi: 10.1063/1.444409

    54. [54]

      Ryabinkin, I. G.; Kananenka, A. A.; Staroverov, V. N. Phys. Rev. Lett. 2013, 111, 074112. doi: 10.1103/PhysRevLett.111.013001

    55. [55]

      Kohut, S. V.; Ryabinkin, I. G.; Staroverov, V. N. J. Chem Phys. 2014, 140, 18A535. doi: 10.1063/1.4871500

    56. [56]

      Slater, J. C. Phys. Rev. 1951, 81, 385. doi: 10.1103/PhysRev.81.385

    57. [57]

      Görling, A. Phys. Rev. A 1992, 46, 3753. doi: 10.1103/PhysRevA.46.3753

    58. [58]

      Görling, A.; Ernzerhof, M. Phys. Rev. A 1995, 51, 4501. doi: 10.1103/PhysRevA.51.4501

    59. [59]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.

    60. [60]

      Woon, D. E.; Dunning, T. H. J. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303

    61. [61]

      Slater, J. C. Phys. Rev. 1969, 179, 28. doi: 10.1103/PhysRev.179.28

    62. [62]

      Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671

    63. [63]

      Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533. doi: 10.1103/PhysRevB.54.16533

    64. [64]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    65. [65]

      Van Voorhis, T.; Scuseria, G. E. J. Chem. Phys. 1998, 109, 400. doi: 10.1063/1.476577

    66. [66]

      Perdew, J. P.; Ruzsinszky, A.; Gábor, I.; Constantin, A. L.; Sun, J. Phys. Rev. Lett. 2009, 103, 026403. doi: 10.1103/PhysRevLett.103.026403

    67. [67]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  334
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-08-25
  • 接受日期:  2017-10-19
  • 修回日期:  2017-09-27
  • 网络出版日期:  2017-06-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章