A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition

Shuai CHEN Junfeng GAO Bharathi M. SRINIVASAN Yong-Wei ZHANG

Citation:  CHEN Shuai, GAO Junfeng, SRINIVASAN Bharathi M., ZHANG Yong-Wei. A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1119-1127. doi: 10.3866/PKU.WHXB201812023 shu

单层和双层二硫化钼化学气相沉积生长的动力学蒙特卡罗模拟研究

摘要: 通过化学气相沉积方法,可控合成所需层数的二硫化钼仍然是一个挑战。因此,建立一个能够定量预测单层和多层二硫化钼生长的理论模型,并为实验制备提供指导,是十分必要的。在本文中,我们建立了一个动力学蒙特卡罗模型,来预测单层和双层二硫化钼的化学气相沉积生长。首先,我们提出了第一层和第二层的生长速率受吸附原子浓度分布的控制,以及紧凑三角形二硫化钼的生长过程为扭结成核和传播。其中,原子浓度是由吸附原子流量,吸附原子的有效寿命,生长温度,边的单位长度能量,单层和双层的单位面积结合能,成核准则决定的。扭结成核和传播是由锯齿边和扶手边附加原子所需的能量势垒决定的。然后,我们采用热力学理论准则对这些参数进行了标定。通过标定的动力学蒙特卡罗模型,我们发现第二层的生长速率与第一层的尺寸有很强的依赖性。随着第一层尺寸增加,第二层的生长速率呈单调递减趋势,甚至在第一层达到某个尺寸时,第二层的生长会被抑制。此外,我们还分析了不同生长温度和吸附原子流量下,双层二硫化钼的尺寸和形貌演化。在双层二硫化钼的整个生长过程中,第一层和第二层的形貌保持紧凑三角形,验证了扭结成核和传播模型的正确性。模拟结果表明,生长温度的升高或吸附原子流量的降低,促进了双层二硫化钼的生长,这与已报导的实验结果相吻合。生长温度升高使得第二层二硫化钼边缘的吸附原子浓度,随着远离第二层边缘的吸附原子浓度降低而相应降低,促进了双层二硫化钼的生长。同样,吸附原子流量降低减小了基体上的吸附原子浓度,降低了第一层远离边缘和靠近边缘的吸附原子浓度差,从而减缓了第一层的生长。第一层的生长减慢,减缓了第二层远离边缘和靠近边缘的吸附原子浓度差减小到零,从而促进双层二硫化钼的生长。为了更好地指导实验,我们进一步构建了双层二硫化钼生长的相图,可通过控制生长温度和吸附原子流量来实现或阻止双层二硫化钼的生长。因此,本工作不仅揭示了单层和双层二硫化钼生长所需的实验条件,而且为可控合成所需层数的二硫化钼提供了详细指导。

English

    1. [1]

      Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H. C.; Huang, Y.; Duan, X. Nat. Rev. Mater. 2016, 1, 16042. doi: 10.1038/natrevmats.2016.42

    2. [2]

      Lin, L.; Liu, Z. Nat. Mater. 2016, 15, 9. doi: 10.1038/nmat4498

    3. [3]

      Zhu, S.; Geng, X.; Han, Y.; Benamara, M.; Chen, L.; Li, J.; Bilgin, I.; Zhu, H. NPJ Comput. Mater. 2017, 3, 41. doi: 10.1038/s41524-017-0041-z

    4. [4]

      Xie, G.; Ju, Z.; Zhou, K.; Wei, X.; Guo, Z.; Cai, Y.; Zhang, G. NPJ Comput. Mater. 2018, 4, 21. doi: 10.1038/s41524-018-0076-9

    5. [5]

      Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 2011, 11, 3768. doi: 10.1021/nl2018178

    6. [6]

      Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; et al. Nat. Commun. 2013, 4, 2642. doi: 10.1038/ncomms3642

    7. [7]

      Yu, Z.; Pan, Y.; Shen, Y.; Wang, Z.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L.; Wang, B.; Sun, L.; et al. Nat. Commun. 2014, 5, 5290. doi: 10.1038/ncomms6290

    8. [8]

      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805. doi: 10.1103/PhysRevLett.105.136805

    9. [9]

      Chu, T.; Ilatikhameneh, H.; Klimeck, G.; Rahman, R.; Chen, Z. Nano Lett. 2015, 15, 8000. doi: 10.1021/acs.nanolett.5b03218

    10. [10]

      Tang, D. M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J.; et al. Nat. Commun. 2014, 5, 3631. doi: 10.1038/ncomms4631

    11. [11]

      Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D'Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M.; et al. 2D Mater. 2017, 4, 045013. doi: 10.1088/2053-1583/aa8764

    12. [12]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Science 2011, 331, 568. doi: 10.1126/science.1194975

    13. [13]

      Liu, Y.; He, X.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. ACS Nano 2016, 10, 8821. doi: 10.1021/acsnano.6b04577

    14. [14]

      Mohiuddin, M.; Wang, Y.; Zavabeti, A.; Syed, N.; Datta, R. S.; Ahmed, H.; Daeneke, T.; Russo, S. P.; Rezk, A. R.; Yeo, L. Y.; et al. Chem. Mater. 2018, 30, 5593. doi: 10.1021/acs.chemmater.8b01506

    15. [15]

      Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Nat. Mater. 2013, 12, 754. doi: 10.1038/NMAT3673

    16. [16]

      Lee, Y. H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S.; et al. Nano Lett. 2013, 13, 1852. doi: 10.1021/nl400687n

    17. [17]

      Shi, J.; Ma, D.; Han, G. F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y.; et al. ACS Nano 2014, 8, 10196. doi: 10.1021/nn503211t

    18. [18]

      Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Chem. Mater. 2014, 26, 6371. doi: 10.1021/cm5025662

    19. [19]

      Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z.; Li, X.; Yu, H.; Zhu, X.; Yang, R.; Shi, D.; et al. J. Am. Chem. Soc. 2015, 137, 15632. doi: 10.1021/jacs.5b10519

    20. [20]

      Yu, H.; Liao, M.; Zhao, W.; Liu, G.; Zhou, X. J.; Wei, Z.; Xu, X.; Liu, K.; Hu, Z.; Deng, K.; et al. ACS Nano 2017, 11, 12001. doi: 10.1021/acsnano.7b03819

    21. [21]

      Chen, S.; Gao, J.; Bharathi, M. S.; Zhang, G.; Sorkin, V.; Ramanarayan, H.; Zhang, Y. W. 2D Mater. 2019, 6, 015031. doi: 10.1088/2053-1583/aaf59c

    22. [22]

      Gao, J.; Xu, Z.; Chen, S.; Bharathi, M. S.; Zhang, Y. W. Adv. Theory Simul. 2018, 1, 1800085. doi: 10.1002/adts.201800085

    23. [23]

      Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2011, 133, 5009. doi: 10.1021/ja110927p

    24. [24]

      Yuan, Q.; Gao, J.; Shu, H.; Zhao, J.; Chen, X.; Ding, F. J. Am. Chem. Soc. 2012, 134, 2970. doi: 10.1021/ja2050875

    25. [25]

      Niu, T.; Zhou, M.; Zhang, J.; Feng, Y.; Chen, W. J. Am. Chem. Soc. 2013, 135, 8409. doi: 10.1021/ja403583s

    26. [26]

      Wu, P.; Zhang, Y.; Cui, P.; Li, Z.; Yang, J.; Zhang, Z. Phys. Rev. Lett. 2015, 114, 216102. doi: 10.1103/PhysRevLett.114.216102

    27. [27]

      Gao, J.; Zhao, J.; Ding, F. J. Am. Chem. Soc. 2012, 134, 6204. doi: 10.1021/ja2104119

    28. [28]

      Artyukhov, V. I.; Liu, Y.; Yakobson, B. I. Proc. Natl. Acad. Sci. USA 2012, 109, 15136. doi: 10.1073/pnas.1207519109

    29. [29]

      Wu, P.; Jiang, H.; Zhang, W.; Li, Z.; Hou, Z.; Yang, J. J. Am. Chem. Soc. 2012, 134, 6045. doi: 10.1021/ja301791x

    30. [30]

      Zhang, X.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2014, 136, 3040. doi: 10.1021/ja405499x

    31. [31]

      Lee, G. D.; Wang, C. Z.; Yoon, E.; Hwang, N. M.; Kim, D. Y.; Ho, K. M. Phys. Rev. Lett. 2005, 95, 205501. doi: 10.1103/PhysRevLett.95.205501

    32. [32]

      Wang, L.; Zhang, X.; Chan, H. L.; Yan, F.; Ding, F. J. Am. Chem. Soc. 2013, 135, 4476. doi: 10.1021/ja312687a

    33. [33]

      Ma, T.; Ren, W.; Zhang, X.; Liu, Z.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Proc. Natl. Acad. Sci. USA 2013, 110, 20386. doi: 10.1073/pnas.1312802110

    34. [34]

      Bharathi, M. S.; Hao, Y.; Ramanarayan, H.; Rywkin, S.; Hone, J. C.; Colombo, L.; Ruoff, R. S.; Zhang, Y. W. ACS Nano 2018, 12, 9372. doi: 10.1021/acsnano.8b04460

    35. [35]

      Artyukhov, V. I.; Hu, Z.; Zhang, Z.; Yakobson, B. I. Nano Lett. 2016, 16, 3696. doi: 10.1021/acs.nanolett.6b00986

    36. [36]

      Hong, S.; Krishnamoorthy, A.; Rajak, P.; Tiwari, S.; Misawa, M.; Shimojo, F.; Kalia, R. K.; Nakano, A.; Vashishta, P. Nano Lett. 2017, 17, 4866. doi: 10.1021/acs.nanolett.7b01727

    37. [37]

      Ye, H.; Zhou, J.; Er, D.; Price, C. C.; Yu, Z.; Liu, Y.; Lowengrub, J.; Lou, J.; Liu, Z.; Shenoy, V. B. ACS Nano 2017, 11, 12780. doi: 10.1021/acsnano.7b07604

    38. [38]

      Nie, Y.; Liang, C.; Zhang, K.; Zhao, R.; Eichfeld, S. M.; Cha, P. R.; Colombo, L.; Robinson, J. A.; Wallace, R. M.; Cho, K. 2D Mater. 2016, 3, 025029. doi: 10.1088/2053-1583/3/2/025029

    39. [39]

      Rajan, A. G.; Warner, J. H.; Blankschtein, D.; Strano, M. S. ACS Nano 2016, 10, 4330. doi: 10.1021/acsnano.5b07916

    40. [40]

      Yue, R.; Nie, Y.; Walsh, L. A.; Addou, R.; Liang, C.; Lu, N.; Barton, A. T.; Zhu, H.; Che, Z.; Barrera, D.; et al. 2D Mater. 2017, 4, 045019. doi: 10.1088/2053-1583/aa8ab5

    41. [41]

      Chang, C. H.; Fan, X.; Lin, S. H.; Kuo, J. L. Phys. Rev. B, 2013, 88, 195420. doi: 10.1103/PhysRevB.88.195420

    42. [42]

      Shu, H.; Chen, X.; Tao, X.; Ding, F. ACS Nano 2012, 6, 3243. doi: 10.1021/nn300726r

    43. [43]

      Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z.; Yang, Z.; Chen, M. L.; Liu, Z.; Ma, T.; Sun, D. M.; Ni, Z.; et al. Adv. Mater. 2017, 29, 1700990. doi: 10.1002/adma.201700990

    44. [44]

      Xue, X. X.; Feng, Y.; Chen, K.; Zhang, L. J. Chem. Phys. 2018, 148, 134704. doi: 10.1063/1.5010996

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  693
  • HTML全文浏览量:  46
文章相关
  • 发布日期:  2019-10-01
  • 收稿日期:  2018-11-12
  • 接受日期:  2019-01-15
  • 修回日期:  2019-01-15
  • 网络出版日期:  2019-10-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章