Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis

Ulises OROZCO-VALENCIA L. GÁZQUEZ José Alberto VELA

Citation:  OROZCO-VALENCIA Ulises, GÁZQUEZ José L., VELA Alberto. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 692-698. doi: 10.3866/PKU.WHXB201801121 shu

Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis

    通讯作者: VELAAlberto, avela@cinvestav.mx
  • 基金项目:

    UOV was supported in part by Conacyt through a doctoral fellowship. JLG thanks Conacyt for grant 237045, and AV thanks Conacyt for grant Fronteras 867

摘要: A global and local charge transfer partitioning model, based on the cornerstone theory developed by Robert G. Parr and Robert G. Pearson, which introduces two charge transfer channels (one for accepting electrons (electrophilic) and another for donating (nucleophilic)), is applied to the reaction of a set of indoles with 4, 6-dinitrobenzofuroxan. The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles, i.e., the indoles under consideration transfer electrons to 4, 6-dinitrobenzofuroxan. Evaluating the reactivity descriptors with exchange-correlation functionals including exact exchange (global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals; however, the trends are preserved. Comparing the trend obtained with the number of electrons donated by the indoles, and predicted by the partitioning model, with that observed experimentally based on the measured rate constants, we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4, 6-dinitrobenzofuroxan. This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species; therefore, it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting. The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions, and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve, reaching an optimal correlation, which in the present case indicates keeping three atoms from the indoles and two from 4, 6-dinitrobenzofuroxan. The atoms selected by this procedure provide valuable information about the local reactivity of the indoles. We further show that this information about the most reactive atoms on each reactant, combined with the spatial distribution of the nucleophilic and electrophilic Fukui functions of both reactants, allows one to propose non-trivial candidates of starting geometries for the search of the transition state structures present in these reactions.

English

    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Revised ed.; Oxford University Press: New York, NY, USA, 1994.

    2. [2]

      Chermette, H. J. Comput. Chem. 1999, 20, 129. doi: 10.1002/(Sici)1096-987x(19990115)20:1 < 129::Aid-Jcc13 > 3.0.Co; 2-A

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    4. [4]

      Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    5. [5]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/Pku.Whxb20090332

    6. [6]

      Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f

    7. [7]

      Chattaraj, P. K.; Roy, D. R. Chem. Rev. 2007, 107, PR46. doi: 10.1021/cr078014b

    8. [8]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43. doi: 10.1021/cr100149p

    9. [9]

      Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403. doi: 10.1016/0010-8545(90)85016-l

    10. [10]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/Ja00364a005

    11. [11]

      Pearson, R. G. Inorg. Chem. 1988, 27, 734. doi: 10.1021/ic00277a030

    12. [12]

      Pearson, R. G. J. Org. Chem. 1989, 54, 1423. doi: 10.1021/jo00267a034

    13. [13]

      Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA, 2005.

    14. [14]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    15. [15]

      Roos, G.; Geerlings, P.; Messens, J. J. Phys. Chem. B 2009, 113, 13465. doi: 10.1021/jp9034584

    16. [16]

      Orozco-Valencia, A. U.; Gazquez, J. L.; Vela, A. J. Phys. Chem. A 2017, 121, 4019. doi: 10.1021/acs.jpca.7b01765

    17. [17]

      Orozco-Valencia, U.; Gazquez, J. L.; Vela, A. J. Mol. Model. 2017, 23, 207. doi: 10.1007/s00894-017-3368-y

    18. [18]

      Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088. doi: 10.1021/jo0614339

    19. [19]

      Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    20. [20]

      Berkowitz, M. J. Am. Chem. Soc. 1987, 109, 4823. doi: 10.1021/ja00250a012

    21. [21]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008

    22. [22]

      Fuentealba, P.; Perez, P.; Contreras, R. J. Chem. Phys. 2000, 113, 2544. doi: 10.1063/1.1305879

    23. [23]

      Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116, 8731. doi: 10.1063/1.1467338

    24. [24]

      Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518

    25. [25]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009. http://www.oalib.com/references/9060914

    26. [26]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396. doi: 10.1103/PhysRevLett.78.1396

    28. [28]

      Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129. doi: 10.1007/bf00549096

    29. [29]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics Modell. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5

    30. [30]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x

    31. [31]

      Terrier, F.; Pouet, M. J.; Halle, J. C.; Hunt, S.; Jones, J. R.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 1993, 1665. doi: 10.1039/p29930001665

    32. [32]

      Domingo, L. R.; Perez, P. Org. Biomol. Chem. 2011, 9, 7168. doi: 10.1039/c1ob05856h

  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  348
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-11-24
  • 接受日期:  2018-01-05
  • 修回日期:  2017-12-29
  • 网络出版日期:  2018-06-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章