

Citation: Xiao Liwei, Liu Guangxian, Li Zheng, Ren Ping, Ren Lilei, Kong Jie. Synthesis of N-Substituted Decahydroacridine-1, 8-diones Promoted by Deep Eutectic Solvents[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2988-2993. doi: 10.6023/cjoc202003043

低共熔溶剂促进N-取代十氢吖啶-1, 8-二酮类化合物的合成
-
关键词:
- 低共熔溶剂
- / 十氢吖啶-1, 8-二酮
- / 多组分反应
- / 绿色化学
English
Synthesis of N-Substituted Decahydroacridine-1, 8-diones Promoted by Deep Eutectic Solvents
-
吖啶二酮类化合物具有广泛的生物活性, 如消炎[1]、抗菌[2]、抗真菌[3]、组蛋白脱乙酰基酶(SITR1)抑制剂[4]、钙钾离子通道调节作用[5]、碳酸酐酶抑制作用[6]等.此外, 吖啶二酮类化合物具有优良的光学性能, 如作为化学传感器[7]、激光染料[8]、染料敏化剂[9]和光聚合引发剂[10]等.因而, 吖啶二酮类化合物的合成方法受到人们的广泛关注.
吖啶二酮类化合物通常由醛、二酮和胺三组分的Hantzsch缩合反应合成.本反应所用的催化剂既有季铵盐[11]、质子酸[12]、Lewis酸[13-15]以及离子液体[16-19]等均相催化体系, 又有固体强酸[20-24]、纳米或介孔材料负载活性物质[25-32]等异相催化体系.此外, 微波辐射[33-34]对Hantzsch反应合成吖啶二酮也有较好的促进作用.虽然人们开发了多种催化体系, 但是一些催化剂存在制备工艺复杂、原料昂贵不易获得、反应条件苛刻或反应过程需要有机溶剂等问题, 有必要发展材料易得、操作简单、条件温和、更加绿色高效的合成方法.
低共熔溶剂(DESs)是本世纪初发展起来的一种低熔点混合物溶剂, 具有制备简单、价格便宜、无毒、能生物降解、稳定性好、组成原料可以再生等优点[35-36], 是一种新型的绿色溶剂.低共熔溶剂由氢键受体(HBA, 主要是季铵盐)与氢键供体(HBD)或季铵盐与金属盐组成, 各组分间的键合形式以氢键为主[37-38], 与传统的离子液体有明显不同.当前, 低共熔溶剂已经成功应用于吸附、分离等诸多领域[39], 尤其是低共熔溶剂作为有机反应的溶剂[40-41]或催化剂[42-43]而倍受关注.氯化胆碱(ChCl)是最早作为氢键受体用于制备低共熔溶剂的季铵盐, 具有便宜易得、兼容性好等优点, 是制备低共熔溶剂常用的原料[44-45].
以芳醛、环己二酮、醋酸铵或苯胺为原料, 在氯化胆碱/氯化锌组成的低共熔溶剂体系中, 通过多组分一锅法合成了一系列N-取代十氢吖啶-1, 8-二酮(Scheme 1), 反应在1~2 h内完成, 操作简单, 反应条件温和, 对反应底物包容性好, 产物收率均达到中等以上.
图式 1
图式 1. 低共熔溶剂中N-取代十氢吖啶-1, 8-二酮类化合物的合成Scheme 1. Synthesis of N-substituted decahydroacridine-1, 8- diones in deep eutectic solvents1. 结果与讨论
1.1 反应条件的优化
以5, 5-二甲基-1, 3-环己二酮、苯甲醛和各种氮源化合物之间的反应为模板, 考察DES组成、温度以及不同的氮源底物等对反应的影响.低共熔溶剂作为反应的溶剂, 其用量以能够完全覆盖反应物为宜.经过探索其用量确定为2 mL.如表 1所示, 70 ℃条件下, 不加任何催化剂和溶剂, 反应收率极低(表 1, Entry 1), 说明本反应活化能较高, 必需加入合适的催化剂降低活化能, 或采用更高的反应温度反应才能顺利进行.将反应置于几种不同组成的DES (ChCl/Urea, ChCl/Oxalic acid, ChCl/ PEG, ChCl/p-TsOH, ChCl/ZnCl2)中, 无须另加催化剂, 反应即能顺利进行, 说明DES对本反应兼具催化剂和溶剂双重功能.上面几种DES体系对反应均表现出不同程度的促进作用, 其中ChCl/ZnCl2的催化效率最高(表 1, Entry 6).
表 1
表 1 合成十氢吖啶-1, 8-二酮反应条件的优化aTable 1. Optimization of reaction conditions for the synthesis of decahydroacridine-1, 8-dionesEntry Madiab Nitrogen source T/℃ Yield/% 1 Free solvent NH4OAc 70 Trace 2 ChCl/Urea NH4OAc 70 67.2 3 ChCl/Oxalic acid NH4OAc 70 65.4 4 ChCl/p-TsOH NH4OAc 70 71.9 5 ChCl/PEG NH4OAc 70 68.2 6 ChCl/ZnCl2 NH4OAc 70 78.4 7 ChCl/ZnCl2 NH4OAc 60 67.8 8 ChCl/ZnCl2 NH4OAc 80 90.2 9 ChCl/ZnCl2 NH4OAc 90 91.6 10 ChCl/ZnCl2 NH4HCO3 80 83.3 11 ChCl/ZnCl2 (NH4)2CO3 80 78.2 12 ChCl/ZnCl2 NH4Cl 80 80.7 13 ChCl/ZnCl2 (NH2)2CO 80 77.9 14 ChCl/ZnCl2 C6H5NH2 80 73.1 15b ChCl/ZnCl2 C6H5NH2 90 88.7 16c ChCl/ZnCl2 NH4OAc 80 81.2 a Reaction conditions: diketone (2 mmol), aromatic aldehyde (1 mmol), ammonium acetate ((2 mmol), aromatic amine (1 mmol), DES (2 mL), reaction time: 1~2 h. b Reaction time 2 h. c ChCl/ZnCl2 was reused three times. 反应在ChCl/ZnCl2体系中进行, 当反应温度低于60 ℃, 反应收率较低(表 1, Entry 7), 可能是由于低温时DES粘度大, 双酮溶解性不好的缘故.反应收率随着温度的升高而提高, 当反应温度升到80 ℃时, 产率达90%以上(表 1, Entry 8), 继续升高温度到90 ℃, 收率略有升高, 但是提高幅度不大(92%, 表 1, Entry 9).实验中, 选用不同的含氮化合物如铵盐、尿素和芳胺等作为氮源, 发现铵盐尤其是醋酸铵效果较尿素及芳胺要好(表 1, Entries 1~12).醋酸铵为氮源时, 反应相对容易进行, 一般在80 ℃反应1~2 h即能达到很高收率(表 1, Entry 8).芳胺的反应活性相对较低, 如苯胺在80 ℃时收率只有73%(表 1, Entry 14).反应温度提高到90 ℃, 收率接近90%(表 1, Entry 15).综合各种因素, 当醋酸铵为氮源时, 反应在80 ℃温度下进行, 而芳胺为氮源时, 反应温度则设定为90 ℃.与无溶剂反应条件下(120 ℃)[28]相比, 在DES介质中进行时本反应条件更加温和.此外, 醋酸铵作氮源时过量1倍, 而芳胺的投料无需过量, 可能因为醋酸铵易分解且产生的氨气易挥发, 而芳胺挥发性较低.反应结束后, DES经简单干燥处理可以循环使用3次, 产率仍在80%以上(表 1, Entry 16), 这也是DES作为反应介质的优势之一.
1.2 反应底物的拓展
为了考察ChCl/ZnCl2体系对Hantzsch缩合反应的适用性, 在优化的反应条件下选用含有不同取代基的双酮、芳醛、醋酸铵或芳胺等进行反应, 合成了一系列N-取代十氢吖啶-1, 8-二酮, 反应结果如表 2所示.产物的结构经过氢谱、碳谱、红外和质谱等方法鉴定, 其数值与文献的报道能较好地吻合.
表 2
Compd. R1 R2 R3 Yield/% 1a H C6H5 H 85.6 1b H 4-MeC6H4 H 83.2 1c H 4-MeOC6H4 H 81.4 1d H 4-NO2C6H4 H 92.6 1e CH3 C6H5 H 90.2 1f CH3 4-BrC6H4 H 83.9 1g CH3 4-MeC6H4 H 82.6 1h CH3 4-MeOC6H4 H 80.5 1i CH3 4-NO2C6H4 H 91.7 1j CH3 3-NO2C6H4 H 86.6 1k CH3 2-Thienyl H 78.6 1l CH3 2-Pyridyl H 81.2 1m H C6H5 3-O2NC6H4 76.1 1n H C6H5 4-MeC6H4 84.7 1o CH3 C6H5 C6H5 83.6 1p CH3 C6H5 3-O2NC6H4 75.1 1q CH3 C6H5 4-MeC6H4 82.7 1r CH3 4-ClC6H4 C6H5 81.3 1s CH3 C6H5 4-ClC6H4 79.8 1t CH3 C6H5 2-Pyridyl 76.5 a Dketone (2 mmol), aromatic aldehyde (1 mmol), ammonium acetate (2 mmol), aromatic amine (1 mmol), DES (2 mL), reaction time: 1~2 h, reaction temperature: 1a~1l 80 ℃, 1m~1t 90 ℃. 从表 2可以看出, 含不同取代基的各种反应底物在ChCl/ZnCl2体系中均能顺利进行反应, 但底物上取代基的电子性质对反应的影响略有不同.含吸电子基团的芳醛(表 2, 1d, 1i, 1j)较供电子基团的芳醛(表 2, 1b, 1c, 1g, 1h)产率相对略高.芳胺中所含取代基的电子性质对反应的影响与芳醛相反, 含供电子基团的芳胺(表 2, 1n, 1q)较含吸电子基团的芳胺(表 2, 1m, 1p, 1s)产率相对略高.此外, 采用含杂环的芳醛(表 2, 1k, 1l)和芳胺(表 2, 1t)进行上述反应, 同样获得了中等以上的收率, 说明ChCl/ZnCl2体系对各种反应底物均有较好的包容性.
1.3 反应的机理
以苯甲醛、5, 5-二甲基-1, 3-环己二酮和醋酸铵的反应为例说明Hantzsch缩合反应可能的机理.在低共熔溶剂活化下, 双酮发生互变异构形成烯醇异构体, 一分子异构体与活化的芳醛缩合形成中间体A, 另一分子异构体与醋酸铵分解放出的氨作用形成中间体B, 中间体A和B之间通过缩合脱去一分子水而形成产物.
2. 结论
以双酮、芳醛、醋酸铵或芳胺等为原料, 在ChCl/ ZnCl2组成的低共熔溶剂作用下合成了一系列N-取代十氢吖啶-1, 8-二酮类化合物.该方法条件温和、反应时间短、环境友好、产率高.所用的ChCl/ZnCl2低共熔溶剂制备简单, 可以多次重复使用, 为低共熔溶剂应用于合成稠合含氮杂环化合物进行了有益的尝试.
图 1
3. 实验部分
3.1 仪器与试剂
熔点由XT4A型显微熔点仪(北京科仪电光仪器厂)测定, 氢谱和碳谱由Ascend-400 MHz型超导核磁共振波谱仪测定(Bruker公司), 红外光谱由Prestige-21型傅立叶变换红外光谱仪(岛津制作所)测定, 质谱由安捷伦5973型质谱仪(Agilent公司)测定.实验所用化学试剂均为分析纯, 使用前未进一步纯化.
3.2 实验方法
3.2.1 低共熔溶剂的制备
低共熔溶剂(ChCl/ZnCl2)的制备参照文献[44]进行. 150 mL圆底烧瓶中加入氯化胆碱13.96 g (0.1 mol)和氯化锌27.26 g (0.2 mol), 于80 ℃油浴下不断搅拌至透明(约2 h).停止加热冷却至室温, 真空干燥5 h后密封保存备用.
3.2.2 十氢吖啶-1, 8-二酮的合成
50 mL圆底烧瓶中加入2 mmol环己二酮, 1 mmol芳醛, 2 mmol醋酸铵或1 mmol芳胺以及2 mL低共熔溶剂充分混合, 于80 ℃或90 ℃油浴中加热搅拌1~2 h.反应进程由薄层色谱跟踪(石油醚/乙酸乙酯, V:V=4:1).反应结束后, 加水充分搅拌过滤.或加乙酸乙酯和水混合物(V:V=1:1)进行萃取, 分液, 有机层干燥, 浓缩, 溶剂回收.滤饼用水洗涤, 晾干, 乙醇重结晶得纯品, 产率达75%~93%.水层浓缩除水得DES (ChCl/ZnCl2), 经真空干燥, 纯化, 重复使用.
9-苯基-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1a):黄色固体, m.p. 277~278 ℃ (Lit.[13] 279~281 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.24~7.13 (m, 4H), 7.06~7.02 (m, 1H), 4.74 (s, 1H), 2.60~2.50 (m, 4H), 2.30~2.24 (m, 4H), 1.96~1.88 (m, 4H); 13C NMR (101 MHz, CDCl3) δ: 195.5, 162.9, 143.3, 127.3, 127.1, 125.4, 115.9, 35.9, 30.6, 26.11, 19.3; IR (KBr) ν: 3048, 2995, 1655, 1560, 1235, 1185 cm-1; MS (70 eV) m/z (%): 293 (M+, 56), 216 (100).
9-(4-甲基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1b):黄色固体, m.p.>300 ℃ (Lit.[18] 332 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.02 (d, J=8.0 Hz, 2H), 6.94 (d, J=8.0 Hz, 2H), 4.85 (s, 1H), 2.29~1.78 (m, 7H), 1.75~1.73 (m, 4H), 1.24~0.85 (m, 4H); 13C NMR (101 MHz, CDCl3) δ: 195.3, 151.6, 145.0, 128.8, 128.5, 127.8, 126.0, 113.1, 37.3, 32.1, 26.8, 21.3; IR (KBr) ν: 3055, 2992, 1645, 1565, 1183, 1085 cm-1; MS (70 eV) m/z (%): 307 (M+, 78), 216 (100), 91 (55).
9-(4-甲氧基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶- 1, 8(2H, 5H)-二酮(1c):黄色固体, m.p.>300 ℃ (Lit.[16] 303~305 ℃); 1H NMR (400 MHz, DMSO-d6) δ: 9.40 (s, 1H), 7.04 (d, J=8.0 Hz, 2H), 6.71 (d, J=8.0 Hz, 2H), 4.84 (s, 1H), 3.68 (s, 3H), 2.19~2.16 (m, 4H), 1.92~1.75 (m, 4H), 1.24~1.00 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ: 195.3, 157.6, 151.5, 140.2, 128.9, 113.6, 113.2, 55.4, 37.3, 26.8, 21.3; IR (KBr) ν: 3065, 3030, 2938, 1640, 1577, 1122 cm-1; MS (70 eV) m/z (%): 323 (M+, 70), 43 (100).
9-(4-硝基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1d):黄色固体, m.p. 281~282 ℃ (Lit.[16] 283~284 ℃); 1H NMR (400 MHz, DMSO-d6) δ: 9.54 (s, 1H), 8.01 (d, J=8.6 Hz, 2H), 7.37 (d, J=8.6 Hz, 2H), 4.95 (s, 1H), 2.60~2.46 (m, 4H), 2.35~2.25 (m, 4H), 1.91~1.68 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ: 195.2, 155.3, 152.4, 146.0, 129.3, 123.6, 111.9, 37.1, 33.7, 26.8, 21.2; IR (KBr) ν: 3064, 3031, 2958, 1641, 1570, 1140 cm-1; MS (70 eV) m/z (%): 338 (M+, 58), 216 (100).
3, 3, 6, 6-四甲基-9-苯基-3, 4, 6, 7, 9, 10-六氢吖啶- 1, 8(2H, 5H)-二酮(1e):黄色晶体, m.p. 279~280 ℃ (Lit.[27] 277~279 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.32 (brs, 1H), 7.28~7.27 (m, 2H), 7.14~7.10 (m, 2H), 7.02~7.00 (m, 1H), 5.02 (s, 1H), 2.27~2.06 (m, 8H), 1.00 (s, 6H), 0.89 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 194.5, 147.2, 145.4, 127.0, 126.9, 125.0, 112.5, 49.7, 39.9, 32.6, 31.6, 28.5, 26.1; IR (KBr) ν: 3058, 3030, 2961, 1642, 1575, 1125 cm-1; MS (70 eV) m/z (%): 349 (M+, 20), 269 (100), 77 (34).
3, 3, 6, 6-四甲基-9-(4-溴苯基)-3, 4, 6, 7, 9, 10-六氢吖啶- 1, 8(2H, 5H)-二酮(1f):黄色固体, m.p. 242~243 ℃ (Lit.[27] 240~242 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.31 (d, J=8.3 Hz, 2H), 7.22 (d, J=8.3 Hz, 2H), 5.02 (s, 1H), 2.43~2.20 (m, 8H), 1.16 (s, 6H), 0.97 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.2, 147.4, 131.0, 129.9, 128.6, 119.8, 113.5, 50.6, 41.3, 33.4, 31.4, 29.5, 27.2; IR (KBr) ν: 3054, 2991, 1642, 1568, 1465, 1123 cm-1; MS (70 eV) m/z (%): 429 (49), 427 (M+, 51), 267 (100).
3, 3, 6, 6-四甲基-9-(4-甲基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1g):黄色晶体, m.p. 290~292 ℃ (Lit.[12] 293~294 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.22 (d, J=7.9 Hz, 2H), 6.99 (d, J=7.7 Hz, 2H), 5.03 (s, 1H), 2.38~2.19 (m, 8H), 2.23 (s, 3H), 1.08 (s, 6H), 0.97 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 196.02, 149.44, 143.75, 135.23, 128.71, 127.91, 113.30, 50.88, 40.64, 33.23, 32.61, 29.56, 27.12, 21.11; IR (KBr) ν: 3064, 3031, 2958, 1641, 1577, 1145 cm-1; MS (70 eV) m/z (%): 363 (M+, 35), 91 (53), 43 (58).
3, 3, 6, 6-四甲基-9-(4-甲氧基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1h):黄色固体, m.p. 276~279 ℃ (Lit.[27] 277~280 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.25 (d, J=8.5 Hz, 2H), 6.73 (d, J=8.5 Hz, 2H), 5.02 (s, 1H), 3.75 (s, 3H), 2.47~2.45 (m, 2H), 2.38~2.03 (m, 6H), 1.09 (s, 6H), 0.97 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 196.0, 157.7, 149.0, 139.2, 128.9, 113.3, 55.0, 50.9, 40.7, 32.7, 29.6, 27.1; IR (KBr) ν: 3055, 3035, 2943, 1642, 1568, 1125 cm-1; MS (70 eV) m/z (%): 379 (M+, 60), 269 (100), 77 (60).
3, 3, 6, 6-四甲基-9-(4-硝基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶(2H, 5H)-1, 8-二酮(1i):黄色固体, m.p. 285~287 ℃ (Lit.[25] 286~288 ℃); 1H NMR (400 MHz, CDCl3) δ: 8.08 (d, J=8.4 Hz, 2H), 7.52 (d, J=8.4 Hz, 2H), 5.15 (s, 1H), 2.45~2.42 (m, 2H), 2.30~2.14 (m, 6H), 1.04 (s, 6H), 0.96 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.2, 161.9, 150.5, 145.5, 128.3, 122.4, 113.6, 49.6, 39.9, 31.3, 28.2, 26.3; IR (KBr) ν: 3092, 2955, 1640, 1525, 1340, 1140, 875 cm-1; MS (70 eV) m/z (%): 394 (M+, 65), 272 (100), 43 (65).
3, 3, 6, 6-四甲基-9-(3-硝基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1j):黄色晶体, m.p.>300 ℃ (Lit.[18] 307~309 ℃); 1H NMR (400 MHz, CDCl3) δ: 8.03~7.92 (m, 2H), 7.39 (m, 2H), 5.11 (s, 1H), 2.46~2.14 (m, 8H), 1.04 (s, 6H), 0.96 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.2, 148.1, 135.5, 128.7, 122.3, 121.3, 112.9, 50.6, 41.2, 34.1, 32.8, 29.4, 27.1; IR (KBr) ν: 3090, 2952, 1643, 1560, 1365, 1235, 880 cm-1; MS (70 eV) m/z (%): 394 (M+, 38), 43 (100).
3, 3, 6, 6-四甲基-9-(噻吩-2-基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1k):黄色晶体, m.p.>300 ℃ (Lit.[31] 330~333 ℃); 1H NMR (400 MHz, DMSO-d6) δ: 10.23 (s, 1H), 7.01~7.25 (m, 3H), 4.73 (s, 1H), 1.96~2.50 (m, 8H), 1.08 (s, 6H), 0.88 (s, 6H); 13C NMR (101 MHz, DMSO-d6) δ: 196.3, 157.0, 134.0, 131.5, 128.5, 112.9, 111.7, 54.8, 50.3, 40.1, 40.0, 31.8, 27.5; IR (KBr) ν: 3064, 2953, 1640, 1535, 1475, 1130 cm-1; MS (70 eV) m/z (%): 355 (M+, 43), 44 (100).
3, 3, 6, 6-四甲基-9-(吡啶-2-基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1l):黄色晶体, m.p. 284~285 ℃ (Lit.[30] 285~286 ℃); 1H NMR (400 MHz, DMSO-d6) δ: 9.20 (s, 1H), 8.30 (d, J=4.0 Hz, 1H), 7.55 (d, J=6.4 Hz, 1H), 7.30 (d, J=7.6 Hz, 1H), 7.03 (d, J=5.2 Hz, 1H), 4.96 (s, 1H), 2.50~1.92 (m, 8H), 1.00 (s, 6H), 0.87 (s, 6H); 13C NMR (101 MHz, DMSO-d6) δ: 193.8, 163.3, 149.4, 147.9, 134.5, 122.4, 120.6, 109.8, 49.7, 34.9, 31.6, 28.6, 25.6; IR (KBr) ν: 3072, 2960, 1634, 1530, 1485, 1145 cm-1; MS (70 eV) m/z (%): 350 (M+, 45), 269 (80), 44 (100).
9-苯基-10-(3-硝基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶- 1, 8(2H, 5H)-二酮(1m):黄色晶体, m.p. 280~282 ℃ (Lit.[16] 282~284 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.37~7.29 (m, 6H), 7.25~7.20 (m, 2H), 7.13~7.10 (m, 1H), 4.82 (s, 1H), 2.68~2.57 (m, 4H), 2.37~2.31 (m, 4H), 2.04~1.99 (m, 4H); 13C NMR (101 MHz, CDCl3) δ: 196.7, 163.9, 144.4, 128.4, 128.1, 126.4, 116.9, 37.0, 31.1, 27.2, 20.3; IR (KBr) ν: 3085, 2953, 1645, 1525, 1340, 1180, 840 cm-1; MS (70 eV) m/z (%): 414 (M+, 32), 337 (78).
9-苯基-10-(4-甲基苯基)-3, 4, 6, 7, 9, 10-六氢吖啶- 1, 8(2H, 5H)-二酮(1n):黄色晶体, m.p. 272~274 ℃ (Lit.[16] 273~276 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.34~7.27 (m, 4H), 7.25~7.10 (m, 5H), 4.82 (s, 1H), 2.61~2.34 (m, 6H), 2.32 (s, 3H), 2.01~1.87 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 196.5, 163.9, 144.4, 128.4, 128.1, 126.4, 116.9, 37.0, 31.6, 27.2, 20.3; IR (KBr) ν: 3048, 2953, 1650, 1578, 1153 cm-1; MS (70 eV) m/z (%): 383 (M+, 45), 292 (100), 91 (75).
3, 3, 6, 6-四甲基-9, 10-二苯基-3, 4, 6, 7, 9, 10-六氢吖啶- 1, 8(2H, 5H)-二酮(1o):黄色晶体, m.p. 251~253 ℃ (Lit.[29] 254~255 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.65~7.43 (m, 4H), 7.63 (d, J=6.0 Hz, 2H), 7.26 (t, J=8.0 Hz, 2H), 7.11 (t, J=8.0 Hz, 2H), 5.10 (s, 1H), 2.26~2.10 (m, 4H), 2.02 (d, J=15.8 Hz, 2H), 1.78 (d, J=15.8 Hz, 2H), 0.88 (s, 6H), 0.72 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.5, 150.7, 146.7, 138.9, 130.5, 129.8, 128.3, 128.0, 126.2, 113.4, 50.0, 41.45, 32.4, 29.8, 26.5; IR (KBr) ν: 3058, 3025, 2948, 1641, 1545, 1182 cm-1; MS (70 eV) m/z (%): 425 (M+, 60), 347 (100), 327 (30).
3, 3, 6, 6-四甲基-9-苯基-10-(3-硝基苯基)- 3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1p):黄色固体, m.p. 195~197 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.44~7.28 (m, 5H), 7.24~7.20 (m, 3H), 7.18~7.16 (m, 1H), 4.75 (s, 1H), 2.52~2.48 (m, 4H), 2.25~2.14 (m, 4H), 1.05 (s, 6H), 0.96 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.4, 147.7, 146.4, 128.0, 126.0, 113.8, 50.8, 41.2, 33.6, 32.7, 29.5, 27.2; IR (KBr) ν: 3052, 3025, 2952, 1643, 1583, 1178 cm-1; MS (70 eV) m/z (%): 470 (M+, 35), 344 (100). Anal. calcd for C29H30N2O4: C 74.02, H 6.43, N 5.95, O 13.60; found C 74.08, H 6.45, N 5.91, O 13.56.
3, 3, 6, 6-四甲基-9-苯基-10-(4-甲基苯基)- 3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1q):黄色晶体, m.p. 263~265 ℃ (Lit.[26] 261~263 ℃); 1H NMR (400 MHz, DMSO-d6) δ: 7.65~7.42 (m, 5H), 7.23 (d, J=6.0 Hz, 2H), 7.06 (d, J=6.0 Hz, 2H), 5.05 (s, 1H), 2.36~2.17 (m, 4H), 2.32 (s, 3H), 2.01~1.96 (m, 2H), 1.74~1.72 (m, 2H), 0.88 (s, 6H), 0.72 (s, 6H); 13C NMR (101 MHz, DMSO-d6) δ: 195.4, 150.6, 143.8, 138.9, 135.0, 130.5, 129.9, 128.8, 127.9, 113.5, 50.0, 41.4, 32.4, 31.9, 29.8, 26.5, 21.1; IR (KBr) ν: 3092, 3056, 2955, 1640, 1576, 1156 cm-1; MS (70 eV) m/z (%): 439 (M+, 68), 43 (52).
3, 3, 6, 6-四甲基-9-(4-氯苯基)-10-苯基-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1r):黄色晶体, m.p. 260~262 ℃ (Lit.[26] 259~261 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.56~7.50 (m, 6H), 7.44~7.42 (m, 1H), 7.25~7.23 (m, 2H), 5.30 (s, 1H), 2.28~2.19 (m, 6H), 1.88~1.80 (m, 2H), 0.95 (s, 6H), 0.79 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.6, 150.3, 132.1, 129.7, 129.3, 128.8, 113.7, 50.6, 50.1, 41.9, 33.7, 32.5, 29.7, 27.3, 26.7; IR (KBr) ν: 3060, 2956, 1639, 1576, 1144, 1087 cm-1; MS (70 eV) m/z (%): 459 (M+, 55), 282 (100), 344 (70).
3, 3, 6, 6-四甲基-9-苯基-10-(4-氯苯基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1s):黄色晶体, m.p.>300 ℃ (Lit.[25] 300~302 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.68 (d, J=8.8 Hz, 2H), 7.48 (d, J=5.6 Hz, 2H), 7.21~7.32 (m, 4H), 7.07~7.12 (m, 1H), 5.05 (s, 1H), 2.16~2.22 (m, 4H), 2.00~1.78 (m, 4H), 0.88 (s, 6H), 0.72 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 195.5, 150.6, 146.6, 137.8, 134.4, 130.6, 128.4, 128.0, 126.3, 113.6, 50.0, 41.4 32.4, 32.3, 29.7, 26.5; IR (KBr) ν: 3085, 3046, 2937, 1645, 1570 cm-1; MS (70 eV) m/z (%): 459 (M+, 83), 379 (100), 344 (25).
3, 3, 6, 6-四甲基-9-苯基-10-(吡啶-2-基)-3, 4, 6, 7, 9, 10-六氢吖啶-1, 8(2H, 5H)-二酮(1t):黄色晶体, m.p. 253~255 ℃ (Lit.[27] 255~257 ℃); 1H NMR (400 MHz; DMSO-d6) δ: 8.75 (s, 1H), 8.14~8.10 (m, 1H), 7.66~7.62 (m, 2H), 7.40~7.37 (m, 2H), 7.27~7.22 (m, 2H), 7.11 (t, J=6.0 Hz, 1H), 5.04 (s, 1H), 2.25~2.18 (m, 4H), 1.98 (d, J=18.0 Hz, H), 1.71 (d, J=18.0 Hz, H), 0.88 (6H, s), 0.72 (s, H); 13C NMR (101 MHz; DMSO-d6) δ: 195.5, 151.8, 150.6, 149.9, 146.7, 140.1, 128.2, 128.2, 126.2, 125.5, 125.4, 113.5, 50.0, 40.8, 32.6, 32.5, 29.6, 21.6; IR (KBr) ν: 3051, 3025, 2958 1640, 1584, 1122 cm-1; MS (70 eV) m/z (%): 426 (M+, 46), 345 (82), 44 (100).
辅助材料(Supporting Information) 所有产物1a~1t的核磁共振氢谱和碳谱图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
Mallu, L.; Thirumalai, D.; Asharani, I. V. Chem. Biol. Drug. Des. 2017, 90, 520. doi: 10.1111/cbdd.12973
-
[2]
Kaya, M.; Yıldırır, Y.; Çelik, G. Y. Med. Chem. Res. 2010, 20, 293.
-
[3]
Kaya, M.; Yıldırır, Y.; Çelik, G. Y. Pharm. Chem. J. 2015, 48, 722. doi: 10.1007/s11094-015-1181-4
-
[4]
Alvala, M.; Bhatnagar, S.; Ravi, A.; Jeankumar, V. U.; Manjashetty, T. H.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2012, 22, 3256. doi: 10.1016/j.bmcl.2012.03.030
-
[5]
Tu, S.; Miao, C.; Fang, F.; Youjian, F.; Li, T.; Zhuang, Q.; Zhang, X.; Zhu, S.; Shi, D. Bioorg. Med. Chem. Lett. 2004, 14, 1533. doi: 10.1016/j.bmcl.2003.12.092
-
[6]
Esirden, I.; Ulus, R.; Aday, B.; Tanç, M.; Supuran, C. T.; Kaya, M. Bioorg. Med. Chem. 2015, 23, 6573. doi: 10.1016/j.bmc.2015.09.022
-
[7]
Velu, R.; Won, N.; Kwag, J.; Jung, S.; Hur, J.; Kim, S.; Park, N. New J. Chem. 2012, 36, 1725. doi: 10.1039/c2nj40444c
-
[8]
Kaya, M.; Yıldırır, Y.; Türker, L. J. Heterocycl. Chem. 2009, 46, 294. doi: 10.1002/jhet.45
-
[9]
Periyasami, G.; Rajesh, R.; Arumugam, N.; Raghunathan, R.; Ganesan, S.; Maruthamuthu, P. J. Mater. Chem. A 2013, 1, 14666. doi: 10.1039/c3ta12221b
-
[10]
Ashokkumar, P.; Ramakrishnan, V. T.; Ramamurthy, P. J. Phys. Chem. B 2011, 115, 84.
-
[11]
Xia, J.-J.; Zhang, K.-H. Molecules 2012, 17, 5339. doi: 10.3390/molecules17055339
-
[12]
]Jin, T.-S.; Zhang, J.-S.; Guo, T.-T.; Wang, A.-Q.; Li, T.-S. Synthesis 2004, 2001.
-
[13]
Chandrasekhar, S.; Rao, Y. S.; Sreelakshmi, L.; Mahipal, B.; Reddy, C. R. Synthesis 2008, 1737.
-
[14]
Kidwai, M.; Bhatnagar, D. Tetrahedron Lett. 2010, 51, 2700. doi: 10.1016/j.tetlet.2010.03.033
-
[15]
Saeed, B.; Fatemeh, C.; Fateme, D.; Hamid Reza, B. Chin. J. Chem. 2009, 27, 1953. doi: 10.1002/cjoc.200990328
-
[16]
Vahdat, S. M.; Akbari, M. Orient. J. Chem. 2011, 27, 1573.
-
[17]
Rad-Moghadam, K.; Azimi, S. C. J. Mol. Catal. A:Chem. 2012, 363, 465. doi: 10.1016/j.molcata.2012.07.026
-
[18]
Zhu, A.; Liu, R.; Du, C.; Li, L. RSC Adv. 2017, 7, 6679. doi: 10.1039/C6RA25709G
-
[19]
史达清, 倪赛男, 窦国兰, 有机化学, 2009, 29, 788. http://sioc-journal.cn/Jwk_yjhx/CN/Y2009/V29/I05/788Shi, D.; Ni, S.; Dou, G. Chin. J. Org. Chem. 2009, 29, 788(in Chinese). http://sioc-journal.cn/Jwk_yjhx/CN/Y2009/V29/I05/788
-
[20]
Safaei, H. R.; Safaei, M.; Shekouhy, M. RSC Adv. 2015, 5, 97.
-
[21]
Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V. S.; Rao, Y. K. J. Mol. Catal. A:Chem. 2006, 247, 233. doi: 10.1016/j.molcata.2005.11.048
-
[22]
Hong, M.; Xiao, G. J. Fluorine Chem. 2012, 144, 7. doi: 10.1016/j.jfluchem.2012.09.006
-
[23]
Kahandal, S. S.; Burange, A. S.; Kale, S. R.; Prinsen, P.; Luque, R.; Jayaram, R. V. Catal. Commun. 2017, 97, 138. doi: 10.1016/j.catcom.2017.03.017
-
[24]
Ramesh, K. B.; Pasha, M. A. Bioorg. Med. Chem. Lett. 2014 24, 3907. doi: 10.1016/j.bmcl.2014.06.047
-
[25]
Aday, B.; Yıldız, Y.; Ulus, R.; Eris, S.; Sen, F.; Kaya, M. New J. Chem. 2016, 40, 748. doi: 10.1039/C5NJ02098K
-
[26]
Pamuka, H.; Adayb, B.; Şena, F.; Kaya, M. RSC Adv. 2015, 5, 49295. doi: 10.1039/C5RA06441D
-
[27]
Zareia, Z.; Akhlaghinia, B. New J. Chem. 2017, 41, 15485. doi: 10.1039/C7NJ03281A
-
[28]
Rafiee, E.; Eavani, S.; Khodayari, M. Chin. J. Catal. 2013, 34, 1513. doi: 10.1016/S1872-2067(12)60645-7
-
[29]
Khojastehnezhad, A.; Rahimizadeh, M.; Eshghi, H.; Moeinpour, F.; Bakavoli, M. Chin. J. Catal. 2014, 35, 376. doi: 10.1016/S1872-2067(14)60001-2
-
[30]
Das, P.; Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Green Chem. 2014, 16, 1426. doi: 10.1039/C3GC42095G
-
[31]
Mahesh, P.; Guruswamy, K.; Diwakar, B. S.; Devi, B. R.; Murthy, Y. L. N.; Kollu, P.; Pammi, S. V. N. Chem. Lett. 2015, 44, 1386. doi: 10.1246/cl.150503
-
[32]
Nasr-Esfahani, M.; Elhamifar, D.; Amadeh, T.; Karimi, B. RSC Adv. 2015, 5, 13087. doi: 10.1039/C4RA12673D
-
[33]
Singh, S. K.; Singh, K. N. J. Heterocycl. Chem. 2011, 48, 69. doi: 10.1002/jhet.508
-
[34]
Tu, S.; Wang, Q.; Zhang, Y.; Xu, J.; Zhang, J.; Zhu, X.; Shi, F. J. Heterocycl. Chem. 2006 3, 1647.
-
[35]
Chen, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. Acta Phys. Chim. Sin. 2018, 34, 904. doi: 10.3866/PKU.WHXB201712281
-
[36]
Li, Y.; Gong, X.; Liu, L.; Dong, J. Chin. J. Chem. 2016, 34, 419. doi: 10.1002/cjoc.201600023
-
[37]
熊兴泉, 韩骞, 石霖, 肖上运, 毕成, 有机化学, 2016, 36, 480. doi: 10.6023/cjoc201508004Xiong, X.; Han, Q.; Shi, L.; Xiao, S.; Bi, C. Chin. J. Org. Chem. 2016, 36, 480(in Chinese). doi: 10.6023/cjoc201508004
-
[38]
Hou, Y.; Yao, C.; Wu, W. Acta Phys. Chim. Sin. 2018, 34, 873. doi: 10.3866/PKU.WHXB201802062
-
[39]
Liu, P.; Hao, J.-W.; Mo, L.-P.; Zhang, Z.-H. RSC Adv. 2015, 5, 48675. doi: 10.1039/C5RA05746A
-
[40]
Zhang, M.; Liu, Y.-H.; Shang, Z.-R.; Hu, H.-C.; Zhang, Z.-H. Catal. Commun. 2017, 88, 39. doi: 10.1016/j.catcom.2016.09.028
-
[41]
Zhang, M.; Liu, P.; Liu, Y.-H.; Shang, Z.-R.; Hu, H.-C.; Zhang, Z.-H. RSC Adv. 2016, 6, 106160. doi: 10.1039/C6RA19579B
-
[42]
Ma, C.-T.; Liu, P.; Wu, W.; Zhang, Z.-H. J. Mol. Liq. 2017, 242, 606. doi: 10.1016/j.molliq.2017.07.060
-
[43]
高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38, 846. doi: 10.6023/cjoc201711014Gao, G.; Wang, P.; Liu, P.; Zhang, W.; Mo, L.; Zhang, Z. Chin. J. Org. Chem. 2018, 38, 846(in Chinese). doi: 10.6023/cjoc201711014
-
[44]
Navarro, C. A.; Sierra, C. A.; Ochoa-Puentes, C. RSC Adv. 2016, 6, 65355. doi: 10.1039/C6RA13848A
-
[45]
Zhang, W.-H.; Chen, M.-N.; Hao, Y.; Jiang, X.; Zhou, X.-L.; Zhang, Z.-H. J. Mol. Liq. 2019, 278, 124. doi: 10.1016/j.molliq.2019.01.065
-
[1]
-
表 1 合成十氢吖啶-1, 8-二酮反应条件的优化a
Table 1. Optimization of reaction conditions for the synthesis of decahydroacridine-1, 8-diones
Entry Madiab Nitrogen source T/℃ Yield/% 1 Free solvent NH4OAc 70 Trace 2 ChCl/Urea NH4OAc 70 67.2 3 ChCl/Oxalic acid NH4OAc 70 65.4 4 ChCl/p-TsOH NH4OAc 70 71.9 5 ChCl/PEG NH4OAc 70 68.2 6 ChCl/ZnCl2 NH4OAc 70 78.4 7 ChCl/ZnCl2 NH4OAc 60 67.8 8 ChCl/ZnCl2 NH4OAc 80 90.2 9 ChCl/ZnCl2 NH4OAc 90 91.6 10 ChCl/ZnCl2 NH4HCO3 80 83.3 11 ChCl/ZnCl2 (NH4)2CO3 80 78.2 12 ChCl/ZnCl2 NH4Cl 80 80.7 13 ChCl/ZnCl2 (NH2)2CO 80 77.9 14 ChCl/ZnCl2 C6H5NH2 80 73.1 15b ChCl/ZnCl2 C6H5NH2 90 88.7 16c ChCl/ZnCl2 NH4OAc 80 81.2 a Reaction conditions: diketone (2 mmol), aromatic aldehyde (1 mmol), ammonium acetate ((2 mmol), aromatic amine (1 mmol), DES (2 mL), reaction time: 1~2 h. b Reaction time 2 h. c ChCl/ZnCl2 was reused three times. 表 2 DES促进系列十氢吖啶-1, 8-二酮的合成a
Table 2. Synthesis of decahydroacridine-1, 8-diones promoted by DES
Compd. R1 R2 R3 Yield/% 1a H C6H5 H 85.6 1b H 4-MeC6H4 H 83.2 1c H 4-MeOC6H4 H 81.4 1d H 4-NO2C6H4 H 92.6 1e CH3 C6H5 H 90.2 1f CH3 4-BrC6H4 H 83.9 1g CH3 4-MeC6H4 H 82.6 1h CH3 4-MeOC6H4 H 80.5 1i CH3 4-NO2C6H4 H 91.7 1j CH3 3-NO2C6H4 H 86.6 1k CH3 2-Thienyl H 78.6 1l CH3 2-Pyridyl H 81.2 1m H C6H5 3-O2NC6H4 76.1 1n H C6H5 4-MeC6H4 84.7 1o CH3 C6H5 C6H5 83.6 1p CH3 C6H5 3-O2NC6H4 75.1 1q CH3 C6H5 4-MeC6H4 82.7 1r CH3 4-ClC6H4 C6H5 81.3 1s CH3 C6H5 4-ClC6H4 79.8 1t CH3 C6H5 2-Pyridyl 76.5 a Dketone (2 mmol), aromatic aldehyde (1 mmol), ammonium acetate (2 mmol), aromatic amine (1 mmol), DES (2 mL), reaction time: 1~2 h, reaction temperature: 1a~1l 80 ℃, 1m~1t 90 ℃. -

计量
- PDF下载量: 6
- 文章访问数: 852
- HTML全文浏览量: 105