协同的非均相光氧化还原催化和镍催化构建碳磷键

Koranteng Ernest 刘以银 刘思跃 伍强贤 陆良秋 肖文精

引用本文: Koranteng Ernest,  刘以银,  刘思跃,  伍强贤,  陆良秋,  肖文精. 协同的非均相光氧化还原催化和镍催化构建碳磷键[J]. 催化学报, 2019, 40(12): 1841-1846. doi: S1872-2067(19)63379-6 shu
Citation:  Ernest Koranteng,  Yi-Yin Liu,  Si-Yue Liu,  Qiang-Xian Wu,  Liang-Qiu Lu,  Wen-Jing Xiao. Practical C-P bond formation via heterogeneous photoredox and nickel synergetic catalysis[J]. Chinese Journal of Catalysis, 2019, 40(12): 1841-1846. doi: S1872-2067(19)63379-6 shu

协同的非均相光氧化还原催化和镍催化构建碳磷键

  • 基金项目:

    国家自然科学基金(21822103,21820102003,21772052,21772053,21572074,21472057);高等学校学科创新引智计划(B17019);湖北省自然科学基金(2017AHB047).

摘要: 作为一类重要的功能有机分子,有机膦化合物广泛用于医药、农药、材料以及生命科学等众多领域中.因此,实现C-P键的高效、高选择性构建一直是合成化学家们的一项重要研究内容.过渡金属催化的碳磷成键反应为有机磷化物的合成提供了一个行之有效的方法,芳基卤代物、硼酸、三氟磺酸酯等前体均可用于该偶联反应.但是,这些反应往往需要用到价格昂贵、空气敏感的金属催化剂或配体以及当量的氧化试剂,且反应条件苛刻.为此,人们迫切需要发展经济、高效、条件温和且具有普适性的绿色合成方法来解决有机膦化合物合成领域的这一难点问题.
近年来,可见光促进的光氧化还原催化因其绿色、环保的优点而受到越来越多合成化学家们的关注.目前,所使用的光催化剂大多是基于贵金属钌、铱的金属有机络合物或一些有机染料分子.相比于均相催化的有机光化学反应,非均相催化过程在催化剂的稳定性与回收利用以及产物分离等方面具有明显的优势.
本文使用商业可得的半导体材料硫化镉作为非均相光催化剂,金属镍复合物作为过渡金属催化剂,实现了过渡金属与光敏剂协同催化的碳磷成键反应.该反应具有非常广的底物适用范围,芳基氯代物、溴代物、三氟磺酸酯以及烯基溴代物均能较好地参与该反应,温和条件下高效地合成得到一系列有机磷化物.将反应规模扩大至克级时,我们发现反应效率几乎不受影响,且反应结束后过滤得到的光催化剂在循环5次后反应效果仍相近.由此可见硫化镉/镍非均相催化体系在有机膦化合物的光化学合成中的有效性和实用性.此外,我们还通过控制实验和自由基捕获实验以及相关文献,提出了该反应的可能机理.

English

    1. [1] L. D. Quin, A Guide to Organophosphorus Chemistry; Wiley Interscience, New York, 2000.

    2. [2] P. J. Murphy, Organophosphorus Reagents, Oxford University Press, Oxford, U.K., 2004.

    3. [3] T. Baumgartner, R. Reau, Chem. Rev., 2006, 106, 4681-4727.

    4. [4] P. Guga, Curr. Top. Med. Chem., 2007, 7, 695-713.

    5. [5] R. Martin, S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461-1473.

    6. [6] C. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev., 2011, 111, 7981-800.

    7. [7] G. P. Horsman, D. L. Zechel, Chem. Rev., 2017, 117, 5704-5783.

    8. [8] T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Tetrahedron Lett., 1980, 21, 3595-3598.

    9. [9] T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Synthesis, 1981, 56-57.

    10. [10] T. Hirao, T. Masunaga, N. Yamada, Y. Ohshiro, T. Agawa, Bull. Chem. Soc. Jpn., 1982, 55, 909-913.

    11. [11] J. L. Montchamp, Y. R. Dumond, J. Am. Chem. Soc., 2001, 123, 510-511.

    12. [12] K. Muñiz, Angew. Chem. Int. Ed., 2009, 48, 9412-9423.

    13. [13] T. Chen, J. S. Zhang, L. B. Han, Dalton Trans., 2016, 45, 1843-1849.

    14. [14] D. Gelman, L. Jiang, S. L. Buchwald, Org. Lett., 2003, 5, 2315-2318.

    15. [15] C. R. Shen, G. Q. Yang, W. B. Zhang, Org. Biomol. Chem., 2012, 10, 3500-3505.

    16. [16] P. Xu, Z. Wu, N. Zhou, C. Zhu, Org. Lett., 2016, 18, 1143-1145.

    17. [17] J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102-113.

    18. [18] J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828-6838.

    19. [19] D. M. Schultz, T. P. Yoon, Science, 2014, 343, 985-993.

    20. [20] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.

    21. [21] N. A. Romero, D. A. Nicewicz, Chem. Rev., 2016, 116, 10075-10166.

    22. [22] L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed., 2018, 57, 10034-10072.

    23. [23] K. Luo, W.-C. Yang, L. Wu, Asian J. Org. Chem., 2017, 6, 350-367.

    24. [24] K. Luo, Y.-Z. Chen, L.-X. Chen, L. Wu, J. Org. Chem., 2016, 81, 4682-4689.

    25. [25] P. Peng, L. Peng, G. Wang, F. Wang, Y. Luo, A. Lei, Org. Chem. Front., 2016, 3, 749-752.

    26. [26] R. S. Shaikh, S. J. S. Düsel, B. König, ACS Catal., 2016, 6, 8410-8414.

    27. [27] J. Yuan, W.-P. To, Z.-Y. Zhang, C.-D. Yue, S. Meng, J. Chen, Y. Liu, G.-A. Yu, C.-M. Che, Org Lett., 2018, 20, 7816-7820.

    28. [28] H. Zeng, Q. Dou, C.-J. Li, Org Lett., 2019, 21, 1301-1305.

    29. [29] Y. He, H. Wu, F. D. Toste, Chem. Sci., 2015, 6, 1194-1198.

    30. [30] J. Xuan, T.-T. Zeng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Chem. Eur. J., 2015, 21, 4962-4965.

    31. [31] L. Niu, J. Liu, H. Yi, S. Wang, X.-A. Liang, A. K. Singh, C.-W. Chiang, A. Lei, ACS Catal., 2017, 7, 7412-7416.

    32. [32] L-L. Liao, Y-Y. Gui, X-B. Zhang, G. Shen, H-D. Liu, W-J. Zhou, J. Li, D-G. Yu, Org. Lett., 2017, 19, 3735-3738.

    33. [33] M. N. Hopkinson, B. Sahoo, J.-L. Li, F. Glorius, Chem. Eur. J., 2014, 20, 3874-3886.

    34. [34] K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev., 2016, 116, 10035-10074.

    35. [35] J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Rev. Chem., 2017, 1, 0052.

    36. [36] F. Wang, W. G. Wang, X. J. Wang, H. Y. Wang, C. H. Tung, L. Z. Wu, Angew. Chem. Int. Ed., 2011, 50, 3193-3197.

    37. [37] S. Ma, J. Xie, J. Wen, K. He, X. Li, W. Liu, X. Zhang, Appl. Surf. Sci., 2017, 391, 580-591.

    38. [38] J. Feng, H. Frei, Angew. Chem. Int. Ed., 2009, 48, 1841-1844.

    39. [39] W. J. Youngblood, S. H. A. Lee, K. Maeda, T. E. Mallouk, Acc. Chem. Res., 2009, 42, 1966-1973.

    40. [40] A. Kumar, A. G. Samuelson, Eur. J. Org. Chem., 2011, 951-959.

    41. [41] U. P. Apfel, W. Weigand, Angew. Chem. Int. Ed., 2011, 50, 4262-4264.

    42. [42] R. Lechner, B. König, Synthesis, 2010, 1712-1718.

    43. [43] X. J. Lang, H. W. Ji, C. C. Chen, W. H. Ma, J. C. Zhao, Angew. Chem. Int. Ed., 2011, 50, 3934-3937.

    44. [44] T. Mitkina, C. Stanglmair, W. Setzer, M. Gruber, H. Kischc, B. König, Org. Biomol. Chem., 2012, 10, 3556-3561.

    45. [45] J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Acc. Chem. Res., 2016, 49, 1911-1923.

    46. [46] W. Ding, L.-Q. Lu, Q.-Q. Zhou, Y. Wei, J.-R. Chen, W.-J. Xiao, J. Am. Chem. Soc., 2017, 139, 63-66.

    47. [47] M.-M. Li, Y. Wei, J. Liu, H.-W. Chen, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc., 2017, 139, 14707-14713.

    48. [48] Q.-Q. Zhou, D. Liu, W.-J. Xiao, L.-Q. Lu, Acta Chim. Sinica, 2017, 75, 110-114.

    49. [49] Y. Wei, S. Liu, M.-M. Li, Y. Li, Y. Lan, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc., 2019, 141, 133-137.

    50. [50] X. Jiang, M.-M. Zhang, W. Xiong, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed., 2019, 58, 2402-2406.

    51. [51] Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao, D. Xu, J. Am. Chem. Soc., 2016, 138, 10128-10131.

    52. [52] T. Minami, J. Motoyoshiya, Synthesis, 1992, 4, 333-349.

    53. [53] P. Adler, A. Fadel, N. Rabasso, Tetrahedron, 2014, 70, 4437-4456.

    54. [54] X. Y. Jiao, W. G. Bentrude, J. Org. Chem., 2003, 68, 3303-3306.

    55. [55] G. J. Schlichting, J. L. Horan, J. D. Jessop, S. E. Nelson, S. Seifert, Y. Yang, A. M. Herring, Macromolecules, 2012, 45, 3874-3882.

    56. [56] Q. Wu, R. A. Weiss, Polymer, 2007, 48, 7558-7566.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  1339
  • HTML全文浏览量:  177
文章相关
  • 收稿日期:  2019-04-19
  • 修回日期:  2019-05-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章