电子轰击电离源-离子阱质谱的质量范围优化程序研究

王伟民 靳留雨 钱炳君 徐福兴 丁传凡

引用本文: 王伟民, 靳留雨, 钱炳君, 徐福兴, 丁传凡. 电子轰击电离源-离子阱质谱的质量范围优化程序研究[J]. 分析化学, 2022, 50(2): 198-205. doi: 10.19756/j.issn.0253-3820.210442 shu
Citation:  WANG Wei-Min,  JIN Liu-Yu,  QIAN Bing-Jun,  XU Fu-Xing,  DING Chuan-Fan. Optimization Procedure of Mass Range for Electron Impact Ion Source Ion Trap Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(2): 198-205. doi: 10.19756/j.issn.0253-3820.210442 shu

电子轰击电离源-离子阱质谱的质量范围优化程序研究

    通讯作者: 徐福兴,E-mail:dingchuanfan@nbu.edu.cn; 丁传凡,E-mail:xufuxing@nbu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21803013,21927805)和中国科学院大连化学物理研究所基金项目(No.DICPZZBS201701,DICPI201951)资助

摘要: 电子轰击电离源(Electron impact ion source, EI)是一种真空中使用的高效电离源,其电离效率可达到0.1%,几乎可以电离所有的物质。近年来,电子轰击电离源-离子阱质谱(EI-ion trap mass spectrometry, EI-ITMS)的发展使得便携式气相色谱-质谱联用仪广泛应用于有毒有害物质的快速现场定性和定量检测。然而,EI-ITMS仪器的性能调试十分繁琐。首先,EI的离子传输效率需要设置合适的透镜电压提取系统,其次,EI电离会产生大量的碎片离子,为了保证最佳的质量范围,需要对离子阱质量分析器的相关电压参数不断进行微调。鉴于此,本研究基于自主研制的电子轰击离子源-离子阱质谱仪,建立了EI-ITMS的质量范围优化调试程序。所研制的EI电离源和离子阱质量分析器在轴向上串联,气体样品通过内径75 μm的石英毛细管进入EI源后,产生的离子在提取电极系统的作用下加速、聚焦,再流向离子阱质量分析器,离子阱的前端盖电压作为门控,控制离子进入。对电子轰击源的各项参数进行了优化,并利用Simion软件模拟研究了实验条件下离子的运动轨迹和传输效率。所建立的EI-ITMS质量范围优化程序有助于缓解离子阱质量分析器的质量歧视效应,实现EI电离产生的小质量碎片分析。实验结果表明,利用所建立的程序可以实现丙酮的碎片离子m/z 43和全氟三丁胺的碎片离子m/z 414的检测。

English


    1. [1]

      SETO Y. On-site Detection of Chemical Warfare Agents. In Handbook of Toxicology of Chemical Warfare Agents, Elsevier, 2020: 983-1003.SETO Y. On-site Detection of Chemical Warfare Agents. In Handbook of Toxicology of Chemical Warfare Agents, Elsevier, 2020: 983-1003.

    2. [2]

      BARFIDOKHT A, MISHRA R K, SEENIVASAN R, LIU S, HUBBLE L J, WANG J, HALL D A. Sens. Actuators, B, 2019, 296: 126422.BARFIDOKHT A, MISHRA R K, SEENIVASAN R, LIU S, HUBBLE L J, WANG J, HALL D A. Sens. Actuators, B, 2019, 296: 126422.

    3. [3]

      SEDDAOUI N, AMINE A. Talanta, 2021, 230: 122346.SEDDAOUI N, AMINE A. Talanta, 2021, 230: 122346.

    4. [4]

      MANCINI D, PERCOT A, BELLOT-GURLETELLOT L, COLOMBAN P, CARNAZZA P. Talanta, 2021, 227: 122159.MANCINI D, PERCOT A, BELLOT-GURLETELLOT L, COLOMBAN P, CARNAZZA P. Talanta, 2021, 227: 122159.

    5. [5]

      HILL H H, MARTIN S J. Pure Appl. Chem., 2002, 74(12): 2281-2291.HILL H H, MARTIN S J. Pure Appl. Chem., 2002, 74(12): 2281-2291.

    6. [6]

      MEUZELAAR H, DWORZANSKI J P, ARNOLD N S, MCCLENNEN W H, WAGER D J. Field Anal. Chem. Technol., 2015, 4(1): 3-13.MEUZELAAR H, DWORZANSKI J P, ARNOLD N S, MCCLENNEN W H, WAGER D J. Field Anal. Chem. Technol., 2015, 4(1): 3-13.

    7. [7]

      CONTRERAS J A, MURRAY J A, TOLLEY S E, OLIPHANTJ L, TOLLEY H D, LAMMERT S A, LEE E D, LATER D W, LEE M L. J. Am. Soc. Mass Spectrom., 2008, 19(10): 1425-1434.CONTRERAS J A, MURRAY J A, TOLLEY S E, OLIPHANTJ L, TOLLEY H D, LAMMERT S A, LEE E D, LATER D W, LEE M L. J. Am. Soc. Mass Spectrom., 2008, 19(10): 1425-1434.

    8. [8]

      TRUONG T V, SADOWSKI C S, PORTER N L, RANDS A D, RICHTER B E, BRANDE T, LATER D W,LEE M L. Scient Chromatogr., 2014, 6(1): 13-26.TRUONG T V, SADOWSKI C S, PORTER N L, RANDS A D, RICHTER B E, BRANDE T, LATER D W,LEE M L. Scient Chromatogr., 2014, 6(1): 13-26.

    9. [9]

      SMITH P A, LEPAGE C J, LUKACS M, MARTIN N, SHUFUTINSKY A, SAVAGE P B. Int. J. Mass Spectrom., 2010, 295(3): 1387-3806.SMITH P A, LEPAGE C J, LUKACS M, MARTIN N, SHUFUTINSKY A, SAVAGE P B. Int. J. Mass Spectrom., 2010, 295(3): 1387-3806.

    10. [10]

      GUO Q, GAO L, ZHAI Y, XU W. Chin. Chem. Lett., 2018, 29: 1578-1584.GUO Q, GAO L, ZHAI Y, XU W. Chin. Chem. Lett., 2018, 29: 1578-1584.

    11. [11]

      BOUCHONNET S. Introduction to GC-MS Coupling. CRC Press: New York, 2013.BOUCHONNET S. Introduction to GC-MS Coupling. CRC Press: New York, 2013.

    12. [12]

      JONSCHER K R, YATES J R. Anal. Biochem., 1997, 244(1): 1-15.JONSCHER K R, YATES J R. Anal. Biochem., 1997, 244(1): 1-15.

    13. [13]

      XU F, XU C, DING L, ZHOU M, DING C F. Int. J. Mass Spectrom., 2018, 428: 29-34.XU F, XU C, DING L, ZHOU M, DING C F. Int. J. Mass Spectrom., 2018, 428: 29-34.

    14. [14]

      DING L, SUDAKOV M, KUMASHIRO S. Int. J. Mass Spectrom., 2002, 221(2): 117-138.DING L, SUDAKOV M, KUMASHIRO S. Int. J. Mass Spectrom., 2002, 221(2): 117-138.

    15. [15]

      WANG Y, SCHUBERT M, INGENDOH A, FRANZEN J. Rapid Commun. Mass Spectrom., 2000, 14(1): 12-17.WANG Y, SCHUBERT M, INGENDOH A, FRANZEN J. Rapid Commun. Mass Spectrom., 2000, 14(1): 12-17.

    16. [16]

      SPLENDORE M, LAUSEVIC M, LAUSEVIC Z, MARCH R. Rapid Commun. Mass Spectrom.,1997, 11(2): 228-233.SPLENDORE M, LAUSEVIC M, LAUSEVIC Z, MARCH R. Rapid Commun. Mass Spectrom.,1997, 11(2): 228-233.

    17. [17]

      BLAIN M G, RITER L S, CRUZ D, AUSTIN D E, WU G, PLASS W R, COOKS R G. Int. J. Mass Spectrom., 2004, 236(1-3): 91-104.BLAIN M G, RITER L S, CRUZ D, AUSTIN D E, WU G, PLASS W R, COOKS R G. Int. J. Mass Spectrom., 2004, 236(1-3): 91-104.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  1114
  • HTML全文浏览量:  260
文章相关
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-09-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章