青霉素酶-氧化苏木精修饰Au/ZnO/石墨烯基青霉素电化学传感器的研制

韩志钟 吴月婷 周莹 潘海波 陈敬华 李春艳

引用本文: 韩志钟, 吴月婷, 周莹, 潘海波, 陈敬华, 李春艳. 青霉素酶-氧化苏木精修饰Au/ZnO/石墨烯基青霉素电化学传感器的研制[J]. 分析化学, 2016, 44(3): 377-384. doi: 10.11895/j.issn.0253-3820.150694 shu
Citation:  HAN Zhi-Zhong, WU Yue-Ting, ZHOU Ying, PAN Hai-Bo, CHEN Jing-Hua, LI Chun-Yan. A Low Detection Limit Penicillin Electrochemical Biosensor Based on Penicillinase-Hematein Au/ZnO/Single Graphene Nanosheets[J]. Chinese Journal of Analytical Chemistry, 2016, 44(3): 377-384. doi: 10.11895/j.issn.0253-3820.150694 shu

青霉素酶-氧化苏木精修饰Au/ZnO/石墨烯基青霉素电化学传感器的研制

    通讯作者: 潘海波
  • 基金项目:

    本文系国家自然科学基金(No.21375017) (No.21375017)

    福建省自然科学基金(No.2015J05020) (No.2015J05020)

    福建省卫生计生委青年科研课题(No.2014-1-39) (No.2014-1-39)

    福建医科大学苗圃科研基金(No.2014MP008)资助 (No.2014MP008)

摘要: 采用均匀沉淀法合成ZnO纳米颗粒(ZnO NPs),以ZnO NPs为种子,制备水溶性Au/ZnO异质结构。将Au/ZnO异质结构附着于离子液体功能化石墨烯(GN)复合膜上,形成一种新颖的负载型石墨烯复合材料(Au/ZnO/GN)。所构建的青霉素酶-氧化苏木精修饰Au/ZnO/GN(PH-AZG)传感器在PBS水溶液(pH=7.0)中对青霉素钠检测线性范围为2.5×10-14~3.3×10-6 mol/L,检出限达到1.5×10-14 mol/L (S/N≥ 3)。在相同条件下制备5根PH-AZG电极,其响应电流的相对标准偏差(RSD)小于3.2%。同时,在实际牛奶制品中,本方法的检测线性范围为5×10-14~5×10-7 mol/L,加标回收率为 99.7%-101.4%,RSD为 2.3%-3.5% (n=5)。结果表明,本方法对实际牛奶制品中低浓度青霉素钠的检测具有可行性。

English

  • 
    1. [1]

      1 Pennacchio A, Varriale A, Scala A, Marzullo V M, Staiano M, D'Auria S. Food Chem., 2016, 190: 381-3851 Pennacchio A, Varriale A, Scala A, Marzullo V M, Staiano M, D'Auria S. Food Chem., 2016, 190: 381-385

    2. [2]

      2 Piñero M Y, Bauza R, Arce L, Valcárcel M. Talanta, 2014, 119: 75-822 Piñero M Y, Bauza R, Arce L, Valcárcel M. Talanta, 2014, 119: 75-82

    3. [3]

      3 Samanidou V, Evaggelopoulou E N. Pharm. Anal. Acta, 2015, 6(4): 1000e1743 Samanidou V, Evaggelopoulou E N. Pharm. Anal. Acta, 2015, 6(4): 1000e174

    4. [4]

      4 Bailon-Perez A M, Garcia-Campana M I, del Olmo M, Iruela C-B C. J. Chromatogr. A, 2009, 1216(47): 8355-83614 Bailon-Perez A M, Garcia-Campana M I, del Olmo M, Iruela C-B C. J. Chromatogr. A, 2009, 1216(47): 8355-8361

    5. [5]

      5 Kloth K., Rye-Johnsen M., Dither A., Dietrich R, Märtlbauer E, Niessner R, Seidel M. Analyst, 2009, 134(7): 1433-14395 Kloth K., Rye-Johnsen M., Dither A., Dietrich R, Märtlbauer E, Niessner R, Seidel M. Analyst, 2009, 134(7): 1433-1439

    6. [6]

      6 Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C. Nanoscale, 2015, 7(39): 16381-163886 Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C. Nanoscale, 2015, 7(39): 16381-16388

    7. [7]

      7 Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Chem. Commun., 2009, 45(26): 3880-38827 Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Chem. Commun., 2009, 45(26): 3880-3882

    8. [8]

      8 XU Xin-Xin, HE Li-Jun, CAI Tian-Pei, YOU Li-Qin, XIANG Guo-Qiang, ZHAO Wen-Jie, JIANG Xiu-Ming. Chinese J. Anal. Chem., 2015, 43(6): 829-835许新新, 何丽君, 蔡天培, 游利琴, 向国强, 赵文杰, 江秀明. 分析化学, 2015, 43(6): 829-8358 XU Xin-Xin, HE Li-Jun, CAI Tian-Pei, YOU Li-Qin, XIANG Guo-Qiang, ZHAO Wen-Jie, JIANG Xiu-Ming. Chinese J. Anal. Chem., 2015, 43(6): 829-835许新新, 何丽君, 蔡天培, 游利琴, 向国强, 赵文杰, 江秀明. 分析化学, 2015, 43(6): 829-835

    9. [9]

      9 Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504-15089 Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504-1508

    10. [10]

      10 Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26(8): 3475-348110 Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26(8): 3475-3481

    11. [11]

      11 Wang M L, Gao Y Q, Zhang J J, Zhao J W. Electrochim. Acta, 2015, 155: 236-24311 Wang M L, Gao Y Q, Zhang J J, Zhao J W. Electrochim. Acta, 2015, 155: 236-243

    12. [12]

      12 Liu N, Ma Z F. Biosens. Bioelectron., 2014, 51: 184-19012 Liu N, Ma Z F. Biosens. Bioelectron., 2014, 51: 184-190

    13. [13]

      13 Arya S K, Saha S, Ramirez-Vick J E, Gupta V, Bhansali S, Singh S P. Anal. Chim. Acta, 2012, 737: 1-2113 Arya S K, Saha S, Ramirez-Vick J E, Gupta V, Bhansali S, Singh S P. Anal. Chim. Acta, 2012, 737: 1-21

    14. [14]

      14 Congur G, Ates E S, Afal A, Unalan H E, Erdem A. J. Am. Ceram. Soc., 2015, 98(2): 663-66814 Congur G, Ates E S, Afal A, Unalan H E, Erdem A. J. Am. Ceram. Soc., 2015, 98(2): 663-668

    15. [15]

      15 Hwa K-Y, Subramani B. Biosens. Bioelectron., 2014, 62: 127-13315 Hwa K-Y, Subramani B. Biosens. Bioelectron., 2014, 62: 127-133

    16. [16]

      16 Wang X, Kong X G, Yu Y, Zhang H. J. Phys. Chem. C, 2007, 111(10): 3836-384116 Wang X, Kong X G, Yu Y, Zhang H. J. Phys. Chem. C, 2007, 111(10): 3836-3841

    17. [17]

      17 Daniel M C, Astruc D. Chem. Rev., 2004, 104(1): 293-34617 Daniel M C, Astruc D. Chem. Rev., 2004, 104(1): 293-346

    18. [18]

      18 Wei Y Y, Li Y, Liu X Q, Xian Y Z, Shi G Y, Jin L T. Biosens. Bioelectron., 2010, 26(1): 275-27818 Wei Y Y, Li Y, Liu X Q, Xian Y Z, Shi G Y, Jin L T. Biosens. Bioelectron., 2010, 26(1): 275-278

    19. [19]

      19 Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339-133919 Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339-1339

    20. [20]

      20 Choi B G, Park H, Park T J, Yang M H, Kim J S. ACS Nano, 2010, 4(5): 2910-291820 Choi B G, Park H, Park T J, Yang M H, Kim J S. ACS Nano, 2010, 4(5): 2910-2918

    21. [21]

      21 Chen C C, Liu P, Lu C H. Chem. Eng. J., 2008, 144(3): 509-51321 Chen C C, Liu P, Lu C H. Chem. Eng. J., 2008, 144(3): 509-513

    22. [22]

      22 Frens G. Nat. Phys. Sci., 1973, 241(105): 20-2222 Frens G. Nat. Phys. Sci., 1973, 241(105): 20-22

    23. [23]

      23 Li D, Muller M B, Gilje S, Kaner R B. Nat. Nanotechnol., 2008, 3(2): 101-10523 Li D, Muller M B, Gilje S, Kaner R B. Nat. Nanotechnol., 2008, 3(2): 101-105

    24. [24]

      24 Kim T Y, Lee H W, Kim J E, Suh K S. ACS Nano, 2010, 4(3): 1612-161824 Kim T Y, Lee H W, Kim J E, Suh K S. ACS Nano, 2010, 4(3): 1612-1618

    25. [25]

      25 Li P, Wei Z, Wu T, Peng Q, Li Y. J. Am. Chem. Soc., 2011, 133(15): 5660-566325 Li P, Wei Z, Wu T, Peng Q, Li Y. J. Am. Chem. Soc., 2011, 133(15): 5660-5663

    26. [26]

      26 He C, Sasaki T, Shimizu Y, Koshizaki N. Appl. Surf. Sci., 2008, 254(7): 2196-220226 He C, Sasaki T, Shimizu Y, Koshizaki N. Appl. Surf. Sci., 2008, 254(7): 2196-2202

    27. [27]

      27 Spanhel L, Anderson M A. J. Am. Chem. Soc., 1991, 113(8): 2826-283327 Spanhel L, Anderson M A. J. Am. Chem. Soc., 1991, 113(8): 2826-2833

    28. [28]

      28 Stred'ansky M, Pizzariello A, Stred'anská S, Miertuš S. Anal. Chim. Acta, 2000, 415(1-2): 151-15728 Stred'ansky M, Pizzariello A, Stred'anská S, Miertuš S. Anal. Chim. Acta, 2000, 415(1-2): 151-157

    29. [29]

      29 Liu J, Rinzler A G, Dai H J, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-M F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Science, 1998, 280(5367): 1253-125629 Liu J, Rinzler A G, Dai H J, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-M F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Science, 1998, 280(5367): 1253-1256

    30. [30]

      30 Yang C, Xu C, Wang X. Langmuir, 2012, 28(9): 4580-458530 Yang C, Xu C, Wang X. Langmuir, 2012, 28(9): 4580-4585

    31. [31]

      31 Chen B, Ma M, Su X. Anal. Chim. Acta, 2010, 674(1): 89-9531 Chen B, Ma M, Su X. Anal. Chim. Acta, 2010, 674(1): 89-95

    32. [32]

      32 Ibupoto Z H, Ali S M U, Khun K, Chey C O, Nur O, Willander M. Biosen., 2011, 1(4):153-16332 Ibupoto Z H, Ali S M U, Khun K, Chey C O, Nur O, Willander M. Biosen., 2011, 1(4):153-163

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  466
  • HTML全文浏览量:  30
文章相关
  • 收稿日期:  2015-08-31
  • 网络出版日期:  2016-01-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章