New Use of Non-natural Catalytic Activity of Pepsin: Highly Efficient Synthesis of Tetrahydroquinazolines

Guofang Jiang Yue Lu Hongxia Li Zhiyu Hu Xiao Zhu Zongbo Xie Zhanggao Le

Citation:  Jiang Guofang, Lu Yue, Li Hongxia, Hu Zhiyu, Zhu Xiao, Xie Zongbo, Le Zhanggao. New Use of Non-natural Catalytic Activity of Pepsin: Highly Efficient Synthesis of Tetrahydroquinazolines[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2827-2835. doi: 10.6023/cjoc202006006 shu

胃蛋白酶非天然催化活性的新用途:高效合成四氢喹唑啉

    通讯作者: 谢宗波, zbxie@ecut.edu.cn
    乐长高, zhgLe@ecut.edu.cn
  • 基金项目:

    国家自然科学基金 21462001

    国家自然科学基金(No.21462001)、江西省科技(No.20161BCB24006)资助项目

    江西省科技 20161BCB24006

摘要: 猪胃粘膜蛋白酶具有催化芳香胺和2-氨基苯甲醛环化缩合反应的能力,在甲醇水溶液中,以良好的收率(41%~95%)合成了一系列四氢喹唑啉类化合物.通过优化酶促反应的溶剂、温度、酶用量和底物比例来提高胃蛋白酶的催化活性.该方法可作为四氢喹唑啉衍生物化学合成的替代方法,也进一步拓展了胃蛋白酶非天然催化活性的应用范围.

English

  • Due to the important building blocks in various compounds of agrochemicals and pharmaceuticals, [1] tetrahydroquinazoline derivatives encountered in a wide range of molecular targeted drugs, such as anti-cancer, anti-malaria, anti-inflammatory, and bactericidal agents.[2] Therefore, considerable effort has been devoted to the development of effective approaches to the establishment of tetrahydroquinazoline derivatives. In recent years, different synthetic protocols for tetrahydroquinazoline derivatives have been developed using Bronsted acid, [3] p-toluenesulfonic acid (p-TSA), [4] iodine, [5] tin(Ⅱ) chloride dehydrate, [6] triphenylphosphine gold(I) triflate, [7] iron, [8] copper(Ⅱ) acetate monohydrate, [9] potassium carbonate, [10] acetic acid, [11] Oxone, [12] sodium acetate, [13] and sodium tetrahydroborate[14] as catalysts. These protocols have greatly improved and enriched access to tetrahydroquinazoline derivatives. However, many of these methods are not fully satisfactory in terms of operational simplicity and mild reaction conditions, due to the multi-step process, excessive oxidants, and the requirement of reagents which are irritant and environment-unfriendly. Therefore, the exploitation of high- efficiency, environmentally-benign, and low-cost alternatives for the tetrahydroquinazolines synthesis remains challenges.

    As efficient, safe and selective catalysts, enzymes have aroused much attention in the agricultural, industrial production.[15] Owing to high stability, selectivity and non- natural activity, hydrolases undoubtedly play a vital role among many types of enzymes, [16] which have been applied in different types of organic transformations, such as Gewald, [17] aldol, [18] retro-Claisen reaction, [19] Mannich, [20] and Friedländer reactions.[21] However, to the best of our knowledge, enzyme-catalyzed synthesis of tetrahydroquinazoline between 2-aminobenzaldehyde () and aromatic amine () has never been reported. Herein, we report a mild and simple method for the synthesis of tetrahydroquinazoline derivatives from 2-aminobenzaldehydes () and aromatic amines () in which up to 94% yields were achieved using green hydrolase, pepsin, as biocatalyst (Scheme 1).

    Scheme 1

    Scheme 1.  Pepsin-catalyzed cyclocondensation of 2-aminoben- zaldehyde and aromatic amine

    The conditions for the reaction between 2-(1-pyrroli- dinyl)benzaldehyde (Ⅰ1) and aniline (Ⅱ1) in ethanol were initially examined. In the absence of pepsin, no detectable product was obtained in 36 h (Table 1, Entry 11). Some hydrolases for the catalysis of the model reaction were then investigated (Table 1). The highest yield (23%) was achieved using pepsin from porcine gastric mucosa (Table 1, Entry 5). In addition, both α-chymotrypsin (Table 1, Entry 1) and trypsin (Table 1, Entry 6) exhibited similar catalytic activity toward this transformation. Nevertheless, other enzymes demonstrated no catalytic ability. Finally, inactivated pepsin (Table 1, Entry 9) and non-enzyme protein bovine serum albumin (BSA) (Table 1, Entry 10) were used in the reaction, respectively, and no product was obtained. When no enzyme was used in the cyclization, no product was observed (Table 1, Entry 11). Concerning on the above outcomes, this enzyme catalysis did not arise simply from the amino acid residues on the surface of the protein.

    Table 1

    Table 1.  Screening of enzymesa
    下载: 导出CSV
    Entry Enzyme Yieldb/%
    1 α-Chymotrypsin 16
    2 Lipase from porcine pancreas None
    3 Alkaline protease None
    4 Lipase B from Candida antarctica None
    5 Pepsin from porcine gastric mucosa 23
    6 Trypsin from bovine pancreas 18
    7 Amano lipase M from Mucor javanicus None
    8 Proteinase from Aspergillus melleus None
    9 Denatured pepsinc None
    10 Bovine serum albumin None
    11 No enzyme None
    a Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.2 mmol), aniline (0.22 mmol), enzyme (15 mg), and ethanol (2 mL), stirred at 50 ℃ for 36 h. b Isolated yield. c Pretreated with urea solution (8 mol/L).

    In terms of the significant role of solvents in maintaining the catalytic activity and stability of an enzyme, [22] various organic solvents were investigated for the pepsin-promoted reaction (Figure 1). The results showed that solvent effect had an evident impact on the reaction. The yield of 31% was obtained when methanol was applied as the solvent. Ethanol also gave the product in the yield of 22%, while low to moderate yields were obtained when other solvents were used. Additionally, no product was observed in methanol without any catalyst.

    Figure 1

    Figure 1.  Effect of solvent on the yield

    Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.2 mmol), aniline (0.22 mmol), pepsin (15 mg), and solvent (2 mL), stirred at 50 ℃ for 36 h. Isolated yield

    Due to the influence of the water content in the conformational flexibility of enzyme, [23] the effect of water content was investigated. When the water content increased from 0 to 50% [φ(water) in methanol], a rise in the yield from 31%~41% was observed. While further increasing the water content led to a decrease in the yield. The same trend was observed in ethanol, but the effect was not as significant as that of methanol. To obtain the best yield, 50% water in methanol was selected as the optimum solvent system for the reaction.

    Temperature plays a key role in enzymatic reactions because of its effect on the reaction rate and the stability of enzymes.[24] Thus, different reaction temperatures were examined on the pepsin-catalyzed transformation (Figure 2). When raised temperature from 30~60 ℃, the yield of product was increased to 52% after 36 h. However, when further increasing the temperature to 70 and 80 ℃, the yield decreases.

    Figure 2

    Figure 2.  Effect of temperature on the yield

    Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.2 mmol), aniline (0.22 mmol), enzyme (15 mg), and 50% aqueous methanol solution (2 mL), stirred at different temperatures for 36 h. Isolated yield.

    The molar ratio of 2-(1-pyrrolidinyl)benzaldehyde and aniline in the pepsin-catalyzed reaction was then examined. When 2-(1-pyrrolidinyl)benzaldehyde and aniline were used in the molar ratio 1:3, the reaction gave a lower yield of 52%. When fixing the amount of aniline, the yield increased with increasing amounts of 2-(1-pyrro- lidinyl) benzaldehyde, and the yield of 61% was obtained when the molar ratio of 2-(1-pyrrolidinyl)benzaldehyde to aniline was 2:1. Further increasing the molar ratio of 2-(1-pyrrolidinyl)benzaldehyde and aniline could detected no significant change of yield. Thus, (2-(1-pyrrolidinyl)- benzaldehyde (0.4 mmol) to aniline (0.2 mmol) molar ratio of 2:1 was identified as the optimal ratio.

    The effect of the enzyme loading on the pepsin-cata- lyzed model reaction was investigated. The yield of the reaction is significantly affected by the enzyme loading. The reaction did not proceed without any catalyst. With the increase of the loading amount of catalyst, the yield of product increases. The yield was increased to 75% when 30 mg of enzyme was used. However, the yield of the product decreased slightly, when further increasing the amount of enzyme to 40 mg, which may be due to the fact that a larger quantity of enzyme in the system hindered the matrix diffusion. Therefore, 30 mg of pepsin was chosen as the optimum condition for the reaction of 2-(1-pyrroli- dinyl)benzaldehyde and aniline (0.50 mmol) in aqueous methanol solution.

    Having established the optimized conditions, the generality of the pepsin-catalyzed cyclocondensation reaction for the synthesis of tetrahydroquinazoline derivatives was evaluated using a variety of 2-aminobenzaldehydes () to react with aromatic amines () (Table 2). These results show that pepsin could tolerate different 2-aminobenzal- dehydes as acceptors and various aromatic amines as donors, including 4-methylaniline, 4-fluoroaniline, 3, 4-dime- thoxyaniline, aniline and 4-nitroaniline. When aromatic amines with electron-donating and electron-withdrawing substituents participate in this reaction (Ⅲ16, Ⅲ18, Ⅲ25, Ⅲ29), the electron-donating substituents at the para position of the benzene ring exhibit positive influence. Electronic effect on the meta position of the benzene ring has slight effect on the enzymatic method (Ⅲ3, Ⅲ13, Ⅲ17, Ⅲ23). Aromatic amines with a substituent at the ortho position can also react smoothly with 2-aminobenzalde- hyde (Ⅲ4, Ⅲ22). Methyl or methoxy substituted aromatic amines performed well in the reaction (Ⅲ16, Ⅲ18, Ⅲ22, Ⅲ29). Furthermore, halogen-substituted aromatic amines are also amenable to the reaction (Ⅲ21, Ⅲ26, Ⅲ27, Ⅲ32). Finally, 2-(azepan-1-yl)benzaldehyde and 2-(3, 4- dihydroisoquinolin-2(1H)-yl)benzaldehyde provided higher yields than those with 2-(pyrrolidin-1-yl)benzaldehyde, presumably due to the increased hydride donor capabilities of these substrates. Overall, most of the substrates tested are better reactive, and a wide range of aromatic amines can react with 2-aminobenzaldehyde to afford to corresponding products in moderate to excellent yields.

    Table 2

    Table 2.  Pepsin-catalyzed synthesis of tetrahydroquinazoline derivativesa
    下载: 导出CSV
    a Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.4 mmol), aniline (0.2 mmol), pepsin (30 mg), and 50% aqueous methanol solution (2 mL), stirred at 60 ℃ for 36 h. Isolated yield.

    In summary, an efficient approach to the synthesis of tetrahydroquinazoline derivatives has been developed by using pepsin as biocatalyst through cyclocondensation reaction in aqueous methanol solution. A wide range of aromatic amines and 2-aminobenzaldehydes were investigated and their corresponding products were obtained in good yields. The effects of various parameters, such as solvent, temperature, and enzyme loading on the pepsin-catalyzed cyclocondensation reaction were investigated. Compared with existing chemical protocols, this enzymatic method is environment-friendly and easy to operate, and performs in mild conditions. Moreover, the catalyst pepsin has the advantages of being non-toxic and biodegradable.

    All major chemicals and solvents were obtained from commercial sources and used without further purification. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance Ⅲ-500 spectrometer (Swiss Bruker, Switzerland). Mass spectrometry were measured using a LTQ-XL linear ion trap mass spectrometer (Thermo-Fisher, USA).

    Pepsin (30 mg) was added to a solution of 2-amino- benzaldehyde (0.4 mmol) and aromatic amine (0.2 mmol) in 50% aqueous methanol solution (2 mL) and the mixture was stirred at 60 ℃ in a constant temperature incubator shaker for the specified period of time. Thin layer chromatography (TLC) was used to follow the reaction. After completion of the reaction, the organic phase was concentrated under reduced pressure to give crude product which was purified by column chromatography [V(petroleum ether):V(ethyl acetate)=10:1 or V(n-hexane):V(dich-loroethane)=1:1] to give pure product.

    4-Phenyl-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quinazo-line (Ⅲ1): Yield 75%. White solid, m.p. 82.6~84.4 ℃ (Lit.[25] 82~84 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.32 (dd, J=10.6, 5.1 Hz, 2H), 7.20~7.10 (m, 4H), 6.96 (d, J=7.5 Hz, 1H), 6.64 (t, J=7.5 Hz, 1H), 6.54 (d, J=8.1 Hz, 1H), 4.64 (dd, J=8.3, 5.3 Hz, 1H), 4.39 (d, J=14.9 Hz, 1H), 4.13~4.11 (m, 1H), 3.46 (td, J=8.7, 3.0 Hz, 1H), 3.38 (dd, J=16.5, 8.2 Hz, 1H), 2.08 (dd, J=8.6, 3.6 Hz, 1H), 1.98 (ddd, J=9.9, 5.3, 2.3 Hz, 1H), 1.95~1.87 (m, 1H), 1.73 (ddd, J=16.5, 10.1, 5.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 150.3, 143.5, 129.0, 127.8, 126.0, 125.2, 124.8, 120.8, 116.2, 111.4, 76.7, 57.4, 47.1, 32.0, 22.3.

    4-(p-Tolyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quina- zoline (Ⅲ2): Yield 66%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.17~7.05 (m, 5H), 6.95 (d, J=7.5 Hz, 1H), 6.62 (t, J=7.3 Hz, 1H), 6.52 (d, J=8.0 Hz, 1H), 4.60 (dd, J=8.3, 5.2 Hz, 1H), 4.35 (d, J=14.9 Hz, 1H), 4.06 (d, J=14.9 Hz, 1H), 3.52~3.29 (m, 2H), 2.32 (s, 3H), 2.04~1.87 (m, 3H), 1.71 (ddd, J=11.5, 9.9, 5.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 147.7, 143.4, 134.6, 129.7, 127.8, 126.0, 125.3, 120.8, 116.1, 111.3, 76.9, 57.6, 47.1, 32.1, 22.3, 21.0; HRMS (ESI) calcd for C18H20N2Na [M+Na]+ 287.1518, found 287.1514.

    4-(m-Tolyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quina- zoline (Ⅲ3): Yield 68%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.21 (t, J=7.5 Hz, 1H), 7.12 (t, J=7.6 Hz, 1H), 7.10~6.88 (m, 4H), 6.64 (t, J=7.4 Hz, 1H), 6.53 (d, J=8.0 Hz, 1H), 4.61 (dd, J=8.3, 5.2 Hz, 1H), 4.34 (d, J=14.8 Hz, 1H), 4.10 (d, J=14.8 Hz, 1H), 3.53~3.33 (m, 2H), 2.34 (s, 3H), 2.11~1.84 (m, 3H), 1.73 (tt, J=11.5, 8.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 150.3, 143.3, 138.7, 128.8, 127.8, 125.9, 125.9, 125.6, 121.9, 120.8, 116.1, 111.3, 76.7, 57.5, 47.1, 32.1, 22.3, 21.5; HRMS (ESI) calcd for C18H20N2Na [M+Na]+ 287.1518, found 287.1514.

    4-(o-Tolyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quina- zoline (Ⅲ4): Yield 55%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.27~7.19 (m, 1H), 7.15 (t, J=7.9 Hz, 2H), 7.08 (t, J=7.1 Hz, 2H), 6.94 (d, J=7.3 Hz, 1H), 6.64 (t, J=7.3 Hz, 1H), 6.57 (d, J=8.0 Hz, 1H), 4.74 (t, J=14.4 Hz, 1H), 4.14 (s, 1H), 3.89 (d, J=15.0 Hz, 1H), 3.52 (t, J=7.2 Hz, 1H), 3.37 (dd, J=16.2, 8.6 Hz, 1H), 2.33 (d, J=12.1 Hz, 3H), 2.05~1.81 (m, 3H), 1.51 (tt, J=11.6, 8.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 146.1, 143.8, 136.7, 130.6, 127.6, 126.7, 126.0, 125.1, 115.9, 111.8, 109.7, 99.9, 76.4, 56.7, 47.7, 32.7, 22.5, 18.0; HRMS (ESI) calcd for C18H20N2Na [M+Na]+ 287.1518, found 287.1514.

    4-(4-Methoxyphenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo- [1, 2-a]quinazoline (Ⅲ5): Yield 50%. White solid, m.p. 73.7~75.3 ℃ (Lit.[25] 73~75 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.16~7.08 (m, 3H), 6.95 (d, J=7.2 Hz, 1H), 6.88~6.82 (m, 2H), 6.63 (t, J=7.1 Hz, 1H), 6.52 (d, J=8.0 Hz, 1H), 4.56 (dd, J=8.3, 5.5 Hz, 1H), 4.36 (d, J=14.9 Hz, 1H), 4.01 (d, J=14.9 Hz, 1H), 3.79 (s, 3H), 3.46 (td, J=8.6, 2.6 Hz, 1H), 3.36 (dd, J=15.9, 8.6 Hz, 1H), 2.01~1.82 (m, 3H), 1.69 (ddd, J=11.2, 8.3, 3.6 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 157.1, 143.4, 143.1, 127.8, 126.80, 126.1, 120.8, 116.0, 114.2, 111.2, 77.3, 57.6, 55.4, 47.1, 32.0, 22.3.

    4-(4-Fluorophenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quinazoline (Ⅲ6): Yield 60%. White solid, m.p. 98.1~98.6 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.20~7.07 (m, 3H), 7.05~6.90 (m, 3H), 6.65 (t, J=7.3 Hz, 1H), 6.53 (d, J=8.0 Hz, 1H), 4.59 (dd, J=7.9, 5.1 Hz, 1H), 4.37 (d, J=14.9 Hz, 1H), 4.03 (d, J=14.9 Hz, 1H), 3.55~3.27 (m, 2H), 2.03~1.83 (m, 3H), 1.70~1.62 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 146.08, 143.38, 127.90, 127.19, 126.0, 120.5, 116.2, 115.8, 115.6, 111.3, 77.0, 57.5, 47.1, 31.8, 22.3; HRMS (ESI) calcd for C17H17FN2Na [M+ Na]+ 291.1268, found 291.1264.

    4-(4-Chlorophenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quinazoline (Ⅲ7): Yield 61%. White solid, m.p. 99.0~99.5 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.25 (dd, J=9.5, 2.7 Hz, 2H), 7.13 (t, J=7.5 Hz, 1H), 7.11~7.03 (m, 2H), 6.95 (d, J=7.5 Hz, 1H), 6.65 (t, J=7.3 Hz, 1H), 6.53 (d, J=8.0 Hz, 1H), 4.60 (dd, J=8.3, 5.3 Hz, 1H), 4.37 (d, J=15.0 Hz, 1H), 4.08 (d, J=5.0 Hz, 1H), 3.49~3.28 (m, 2H), 2.13~1.81 (m, 3H), 1.68 (tt, J=11.2, 8.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 148.7, 143.4, 130.1, 129.1, 128.0, 126.6, 126.0, 120.5, 116.4, 111.4, 76.6, 57.2, 47.0, 31.8, 22.2; HRMS (ESI) calcd for C17H17ClN2Na [M+ Na]+ 307.0972, found 307.0973.

    4-(4-Bromophenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quinazoline (Ⅲ8): Yield 52%. White solid, m.p. 97.6~99.1 ℃ (Lit.[25] 97~99 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.41 (d, J=8.6 Hz, 2H), 7.14 (t, J=7.6 Hz, 1H), 7.04 (d, J=8.5 Hz, 2H), 6.96 (d, J=7.3 Hz, 1H), 6.66 (t, J=7.3 Hz, 1H), 6.52 (d, J=7.0 Hz, 1H), 4.61 (dd, J=8.2, 5.4 Hz, 1H), 4.37 (d, J=15.0 Hz, 1H), 4.08 (d, J=15.0 Hz, 1H), 3.54~3.38 (m, 1H), 3.38~3.29 (m, 1H), 2.11~1.88 (m, 3H), 1.69 (ddd, J=20.0, 11.3, 8.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.0, 143.4, 132.0, 128.0, 126.9, 126.0, 120.3, 117.9, 116.4, 111.5, 76.6, 57.1, 47.0, 31.7, 22.2.

    4-(4-Iodophenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]-quinazoline (Ⅲ9): Yield 43%. White solid, m.p. 73.7~74.0 ℃ (Lit.[26] 72~74 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.60 (d, J=8.6 Hz, 2H), 7.14 (t, J=7.6 Hz, 1H), 6.92 (dd, J=28.0, 7.0 Hz, 3H), 6.66 (t, J=7.3 Hz, 1H), 6.53 (d, J=8.0 Hz, 1H), 4.61 (dd, J=8.3, 5.3 Hz, 1H), 4.37 (d, J=15.0 Hz, 1H), 4.08 (d, J=14.0 Hz, 1H), 3.49~3.28 (m, 2H), 2.14~2.03 (m, 1H), 2.02~1.84 (m, 2H), 1.70 (tt, J=11.1, 8.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.9, 143.5, 138.0, 128.0, 127.1, 125.9, 120.5, 116.4, 111.4, 88.6, 76.4, 57.0, 47.0, 31.7, 22.2.

    4-(1, 2, 3, 3a-Tetrahydropyrrolo[1, 2-a]quinazolin-4(5H)- yl)benzonitrile (Ⅲ10): Yield 49%. White solid, m.p. 116.3~117.2 ℃ (Lit.[25] 116~118 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.53 (d, J=8.8 Hz, 2H), 7.20 (t, J=7.4 Hz, 1H), 7.03 (dd, J=17.1, 8.2 Hz, 3H), 6.77 (t, J=7.4 Hz, 1H), 6.64 (d, J=8.0 Hz, 1H), 4.58 (dd, J=8.3, 5.5 Hz, 1H), 4.46 (d, J=14.7 Hz, 1H), 4.29 (d, J=14.7 Hz, 1H), 3.44 (td, J=8.3, 6.4 Hz, 1H), 3.33 (td, J=8.8, 5.3 Hz, 1H), 2.37 (tdd, J=8.4, 5.5, 3.3 Hz, 1H), 2.14~1.92 (m, 2H), 1.77 (ddd, J=18.0, 12.2, 9.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 152.9, 144.3, 133.1, 128.3, 125.7, 122.2, 120.1, 119.7, 118.1, 112.2, 103.3, 75.0, 52.6, 46.2, 31.3, 21.5.

    4-(4-Nitrophenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]-quinazoline (Ⅲ11): Yield 43%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 8.18~8.11 (m, 2H), 7.24 (t, J=7.5 Hz, 1H), 7.10 (d, J=7.3 Hz, 1H), 6.93~6.86 (m, 2H), 6.83 (t, J=7.3 Hz, 1H), 6.71 (d, J=7.9 Hz, 1H), 4.59~4.49 (m, 2H), 4.36 (d, J=14.3 Hz, 1H), 3.51 (td, J=8.7, 4.8 Hz, 1H), 3.29 (td, J=8.9, 6.6 Hz, 1H), 2.59~2.46 (m, 1H), 2.17~1.95 (m, 2H), 1.82 (ddt, J=12.3, 10.0, 8.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 153.7, 144.6, 139.4, 128.4, 125.6, 125.5, 123.4, 119.0, 116.2, 112.6, 74.5, 50.5, 45.6, 31.2, 21.1; HRMS (ESI) calcd for C17H17N3O2Na [M+Na]+ 318.1213, found 318.1210.

    4-(3, 4-Dimethoxyphenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrro- lo[1, 2-a]quinazoline (Ⅲ12): Yield 41%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.13 (t, J=7.5 Hz, 1H), 6.95 (d, J=7.1 Hz, 1H), 6.87~6.69 (m, 3H), 6.64 (t, J=7.3 Hz, 1H), 6.52 (d, J=8.0 Hz, 1H), 4.59 (dd, J=7.9, 5.1 Hz, 1H), 4.37 (d, J=14.8 Hz, 1H), 4.04 (d, J=14.8 Hz, 1H), 3.85 (d, J=22.8 Hz, 6H), 3.57~3.29 (m, 2H), 2.12~1.81 (m, 3H), 1.71 (dt, J=19.4, 8.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 148.9, 146.7, 143.2, 127.8, 126.1, 120.6, 116.7, 116.0, 111.2, 111.1, 110.2, 57.7, 56.0, 55.8, 47.2, 32.0, 22.3; HRMS (ESI) calcd for C19H22N2O2Na [M+Na]+ 333.1573, found 333.1566.

    4-(3-Chlorophenyl)-1, 2, 3, 3a, 4, 5-hexahydropyrrolo[1, 2-a]quinazoline (Ⅲ13): Yield 74%. White solid, m.p. 70.9~71.5 ℃ (Lit.[26] 70~71 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.22 (dd, J=14.3, 6.3 Hz, 1H), 7.18~7.11 (m, 2H), 7.09 (d, J=7.9 Hz, 1H), 7.03 (d, J=7.0 Hz, 1H), 6.96 (d, J=7.3 Hz, 1H), 6.67 (t, J=7.4 Hz, 1H), 6.54 (d, J=8.0 Hz, 1H), 4.60 (dd, J=8.3, 5.3 Hz, 1H), 4.35 (d, J=14.9 Hz, 1H), 4.12 (d, J=14.9 Hz, 1H), 3.52~3.30 (m, 2H), 2.11 (ddd, J=12.2, 7.3, 2.3 Hz, 1H), 2.05~1.86 (m, 2H), 1.72 (tt, J=11.2, 8.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 151.5, 143.4, 134.3, 129.9, 127.9, 125.9, 124.7, 124.5, 123.1, 120.5, 116.4, 111.5, 76.3, 56.9, 47.0, 31.8, 22.2.

    4-(4-(Trifluoromethyl)phenyl)-1, 2, 3, 3a, 4, 5-hexahydrop-yrrolo[1, 2-a]quinazoline (Ⅲ14): Yield 76%. White solid, m.p. 73.4~73.9 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.53 (d, J=8.5 Hz, 2H), 7.15 (d, J=8.3 Hz, 3H), 6.99 (d, J=7.3 Hz, 1H), 6.70 (t, J=7.4 Hz, 1H), 6.57 (d, J=8.0 Hz, 1H), 4.65 (dd, J=8.3, 5.4 Hz, 1H), 4.42 (d, J=15.0 Hz, 1H), 4.21 (d, J=15.0 Hz, 1H), 3.48~3.32 (m, 2H), 2.22 (tdd, J=7.7, 5.5, 2.7 Hz, 1H), 2.08~1.87 (m, 2H), 1.74 (ddd, J=18.9, 12.0, 8.6 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 153.0, 143.8, 128.1, 126.1, 126.1, 125.9, 123.2, 120.9, 117.0, 111.7, 75.9, 55.7, 46.8, 31.6, 22.0; HRMS (ESI) calcd for C18H17F3N2Na [M+Na]+ 341.1236, found 341.1236.

    6-Phenyl-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino[1, 2-a]qui-nazoline (Ⅲ15): Yield 84%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.24~7.20 (m, 2H), 7.09 (t, J=7.4 Hz, 1H), 7.01 (d, J=7.5 Hz, 1H), 6.95 (d, J=7.9 Hz, 2H), 6.83 (t, J=7.3 Hz, 1H), 6.64~6.55 (m, 2H), 4.88 (dd, J=9.9, 4.2 Hz, 1H), 4.58 (d, J=16.1 Hz, 1H), 4.38 (d, J=16.1 Hz, 1H), 3.88 (ddd, J=15.0, 6.3, 3.2 Hz, 1H), 3.28~3.18 (m, 1H), 2.18~2.09 (m, 1H), 1.97~1.84 (m, 2H), 1.68~1.58 (m, 3H), 1.48 (ddd, J=17.2, 9.6, 4.0 Hz, 1H), 1.35 (ddd, J=13.6, 8.8, 4.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.8, 142.6, 129.3, 129.2, 127.8, 126.5, 117.8, 117.4, 115.6, 110.1, 75.1, 47.1, 46.3, 33.0, 26.4, 26.0, 24.8; HRMS (ESI) calcd for C19H22N2Na [M+Na]+ 301.1675, found 301.1672.

    6-(p-Tolyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino[1, 2-a]-quinazoline (Ⅲ16): Yield 92%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.11~6.95 (m, 4H), 6.86 (d, J=8.5 Hz, 2H), 6.64~6.53 (m, 2H), 4.80 (dd, J=10.1, 4.0 Hz, 1H), 4.56 (d, J=16.2 Hz, 1H), 4.31 (d, J=16.2 Hz, 1H), 3.85 (ddd, J=15.0, 6.3, 3.3 Hz, 1H), 3.27~3.13 (m, 1H), 2.24 (s, 3H), 2.13 (dtd, J=16.2, 10.8, 5.4 Hz, 1H), 1.96~1.78 (m, 2H), 1.72~1.56 (m, 3H), 1.54~1.41 (m, 1H), 1.40~1.28 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 147.7, 142.7, 129.7, 129.5, 127.7, 126.6, 117.9, 117.9, 115.5, 110.0, 75.7, 47.1, 46.5, 33.1, 26.4, 26.1, 24.8, 20.6; HRMS (ESI) calcd for C20H24N2Na [M+Na]+ 315.1831, found 315.1827.

    6-(m-Tolyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino[1, 2-a]-quinazoline (Ⅲ17): Yield 89%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.14~7.04 (m, 2H), 7.00 (d, J=7.2 Hz, 1H), 6.75 (d, J=8.5 Hz, 2H), 6.68~6.54 (m, 3H), 4.87 (dd, J=9.9, 4.2 Hz, 1H), 4.56 (d, J=16.1 Hz, 1H), 4.37 (d, J=16.1 Hz, 1H), 3.88 (ddd, J=15.0, 6.3, 3.1 Hz, 1H), 3.29~3.19 (m, 1H), 2.30 (s, 3H), 2.19~2.10 (m, 1H), 1.94~1.81 (m, 2H), 1.70~1.58 (m, 3H), 1.53~1.44 (m, 1H), 1.35 (ddd, J=18.6, 9.2, 4.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.7, 142.6, 138.8, 129.9, 127.7, 126.5, 120.8, 118.1, 117.9, 115.6, 114.3, 110.1, 75.1, 47.1, 46.3, 32.7, 26.4, 26.0, 24.8, 21.9; HRMS (ESI) calcd for C20H24N2Na [M+Na]+ 315.1831, found 315.1886.

    6-(4-Methoxyphenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroaze- pino[1, 2-a]quinazoline (Ⅲ18): Yield 95%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.07 (t, J=7.5 Hz, 1H), 6.94 (dd, J=24.2, 8.1 Hz, 3H), 6.82~6.71 (m, 2H), 6.65~6.52 (m, 2H), 4.72~4.53 (m, 2H), 4.23 (d, J=16.3 Hz, 1H), 3.88~3.76 (m, 1H), 3.72 (s, 3H), 3.16 (ddd, J=15.4, 10.2, 5.6 Hz, 1H), 2.16~2.05 (m, 1H), 1.95 (d, J=6.1 Hz, 1H), 1.86 (dtd, J=13.5, 10.1, 3.6 Hz, 1H), 1.74~1.54 (m, 3H), 1.53~1.41 (m, 1H), 1.34 (dtd, J=14.1, 9.8, 4.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 154.1, 144.4, 142.81, 127.7, 126.5, 120.3, 117.8, 115.4, 114.4, 109.9, 76.8, 55.5, 47.3, 47.0, 33.9, 26.4, 26.2, 24.8; HRMS (ESI) calcd for C20H24N2ONa [M+Na]+ 331.1780, found 331.1774.

    6-(4-(Trifluoromethyl)phenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahy-droazepino[1, 2-a]quinazoline (Ⅲ19): Yield 82%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.47 (d, J=8.7 Hz, 2H), 7.10 (t, J=7.8 Hz, 1H), 7.02 (d, J=7.4 Hz, 1H), 6.94 (d, J=8.7 Hz, 2H), 6.69~6.60 (m, 2H), 4.96 (dd, J=9.3, 5.0 Hz, 1H), 4.51 (dd, J=45.7, 16.0 Hz, 2H), 3.91 (ddd, J=15.1, 6.6, 3.0 Hz, 1H), 3.3~3.19 (m, 1H), 2.17 (ddt, J=20.3, 10.4, 6.2 Hz, 1H), 1.91~1.83 (m, 2H), 1.71~1.62 (m, 3H), 1.54~1.47 (m, 1H), 1.39~1.33 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 151.5, 142.4, 128.0, 126.7, 126.6, 126.5, 125.8, 117.5, 116.1, 115.3, 110.5, 73.8, 47.3, 45.9, 32.4, 26.6, 25.8, 24.7; HRMS (ESI) calcd for C20H21F3N2Na [M+H]+ 347.1729, found 347.1726.

    4-(6a, 7, 8, 9, 10, 11-Hexahydroazepino[1, 2-a]quinazolin- 6(5H)-yl)benzonitrile (Ⅲ20): Yield 83%. White solid, m.p. 142.7~143.2 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.50 (d, J=8.9 Hz, 2H), 7.12 (t, J=7.4 Hz, 1H), 7.03 (d, J=7.3 Hz, 1H), 6.87 (d, J=8.9 Hz, 2H), 6.73~6.61 (m, 2H), 5.07~4.93 (m, 1H), 4.57~4.42 (m, 2H), 3.92 (ddd, J=15.1, 6.6, 2.7 Hz, 1H), 3.35~3.21 (m, 1H), 2.25~2.12 (m, 1H), 1.86 (dd, J=12.7, 6.9 Hz, 2H), 1.76~1.56 (m, 3H), 1.56~1.45 (m, 1H), 1.45~1.33 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 151.3, 142.2, 133.6, 128.2, 126.6, 120.1, 117.4, 116.6, 114.6, 110.9, 100.2, 72.8, 47.5, 45.5, 31.8, 26.9, 25.6, 24.6; HRMS (ESI) calcd for C20H21N3Na [M+Na]+ 326.1627, found 326.1620.

    6-(4-Chlorophenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino-[1, 2-a]quinazoline (Ⅲ21): Yield 85%. White solid, m.p. 95.1~95.6 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.22~7.14 (m, 2H), 7.09 (t, J=7.5 Hz, 1H), 6.98 (d, J=7.2 Hz, 1H), 6.90~6.83 (m, 2H), 6.66~6.56 (m, 2H), 4.79 (dd, J=10.0, 4.2 Hz, 1H), 4.56 (d, J=16.2 Hz, 1H), 4.31 (d, J=16.2 Hz, 1H), 3.87 (ddd, J=15.0, 6.3, 3.3 Hz, 1H), 3.25~3.14 (m, 1H), 2.20~2.09 (m, 1H), 1.96~1.81 (m, 2H), 1.67 (dddd, J=27.8, 13.9, 8.7, 4.8 Hz, 3H), 1.54~1.43 (m, 1H), 1.40~1.30 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 148.5, 1 42.5, 129.0, 127.9, 126.5, 124.8, 118.8, 117.4, 115.8, 110.2, 75.3, 47.1, 46.5, 33.2, 26.4, 26.0, 24.7; HRMS (ESI) calcd for C19H21ClN2Na [M+Na]+ 335.1285, found 335.1278.

    6-(o-Tolyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino[1, 2-a]-quinazoline (Ⅲ22): Yield 90%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.07 (d, J=7.24 Hz, 1H), 7.03 (t, J=7.7 Hz, 1H), 6.93 (dd, J=10.8, 4.3 Hz, 1H), 6.85 (dd, J=13.6, 6.9 Hz, 3H), 6.52 (t, J=7.1 Hz, 2H), 4.65 (d, J=16.9 Hz, 1H), 4.16 (dd, J=10.1, 4.3 Hz, 1H), 3.88 (d, J=16.9 Hz, 1H), 3.09~2.86 (m, 1H), 2.26 (s, 3H), 2.11~1.85 (m, 3H), 1.64~1.24 (m, 6H); 13C NMR (126 MHz, CDCl3) δ: 151.3, 143.3, 132.8, 130.9, 127.7, 126.7, 126.2, 123.4, 121.8, 118.4, 115.3, 109.6, 77.0, 47.8, 46.9, 35.4, 26.5, 26.2, 24.9, 18.5; HRMS (ESI) calcd for C20H24N2Na [M+Na]+ 315.1831, found 315.1827.

    6-(3-Chlorophenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino-[1, 2-a]quinazoline (Ⅲ23): Yield 82%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.15~7.07 (m, 2H), 7.00 (d, J=7.4 Hz, 1H), 6.89 (t, J=2.1 Hz, 1H), 6.82~6.77 (m, 2H), 6.67~6.59 (m, 2H), 4.88~4.80 (m, 1H), 4.54 (d, J=16.0 Hz, 1H), 4.37 (d, J=16.1 Hz, 1H), 3.90 (ddd, J=15.1, 6.5, 3.0 Hz, 1H), 3.25 (ddd, J=15.8, 10.3, 5.9 Hz, 1H), 2.15 (ddt, J=12.2, 10.5, 6.1 Hz, 1H), 1.91~1.82 (m, 2H), 1.71~1.60 (m, 3H), 1.53~1.45 (m, 1H), 1.40~1.31 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 150.7, 142.5, 135.0, 130.2, 128.0, 126.6, 119.5, 117.5, 116.7, 116.0, 114.9, 110.4, 74.5, 47.2, 46.2, 32.7, 26.5, 26.0, 24.7; HRMS (ESI) calcd for C19H22ClN2 [M+H]+ 313.1466, found 313.1462.

    6-(4-Nitrophenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino-[1, 2-a]quinazoline (Ⅲ24): Yield 71%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 8.14 (d, J=9.3 Hz, 2H), 7.15 (t, J=7.5 Hz, 1H), 7.05 (d, J=7.3 Hz, 1H), 6.82 (d, J=9.3 Hz, 2H), 6.78~6.64 (m, 2H), 5.09 (t, J=7.3 Hz, 1H), 4.54 (q, J=15.9 Hz, 2H), 3.93 (ddd, J=15.3, 6.4, 2.4 Hz, 1H), 3.38~3.23 (m, 1H), 2.25~2.13 (m, 1H), 1.87 (dd, J=12.9, 6.9 Hz, 2H), 1.78~1.66 (m, 2H), 1.66~1.48 (m, 2H), 1.47~1.35 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 152.5, 142.2, 138.3, 128.3, 126.6, 126.1, 117.5, 116.9, 112.6, 111.2, 72.4, 47.7, 45.6, 31.4, 27.1, 25.5, 24.6; HRMS (ESI) calcd for C19H21N3O2Na [M+H]+ 324.1706, found 324.1702.

    6-(3, 4-Dimethoxyphenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroa-zepino[1, 2-a]quinazoline (Ⅲ25): Yield 89%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.09 (t, J=7.5 Hz, 1H), 6.98 (d, J=7.5 Hz, 1H), 6.72 (d, J=8.7 Hz, 1H), 6.60 (dd, J=17.2, 8.6 Hz, 3H), 6.49 (dd, J=8.6, 2.3 Hz, 1H), 4.74~4.55 (m, 2H), 4.24 (d, J=16.0 Hz, 1H), 3.83 (t, J=13.5 Hz, 7H), 3.19 (ddd, J=15.4, 10.1, 5.6 Hz, 1H), 2.12 (qd, J=10.7, 5.5 Hz, 1H), 2.03~1.82 (m, 2H), 1.77~1.56 (m, 3H), 1.54~1.44 (m, 1H), 1.41~1.31 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.3, 144.9, 143.8, 142.7, 127.8, 126.4, 117.8, 115.5, 111.8, 110.4, 109.9, 104.6, 76.9, 56.2, 55.9, 47.5, 47.0, 33.9, 26.3, 26.2, 24.8; HRMS (ESI) calcd for C21H26N2O2Na [M+Na]+ 361.1886, found 361.1877.

    6-(4-Bromophenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino-[1, 2-a]quinazoline (Ⅲ26): Yield 88%. White solid, m.p. 105.3~107.6 ℃ (Lit.[25] 105~108 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.34~7.28 (m, 2H), 7.10 (t, J=7.4 Hz, 1H), 6.98 (d, J=7.5 Hz, 1H), 6.85~6.78 (m, 2H), 6.67~6.55 (m, 2H), 4.80 (dd, J=10.0, 4.2 Hz, 1H), 4.55 (d, J=16.2 Hz, 1H), 4.32 (d, J=16.2 Hz, 1H), 3.87 (ddd, J=15.0, 6.4, 3.2 Hz, 1H), 3.22 (ddd, J=15.6, 10.2, 5.8 Hz, 1H), 2.24~2.08 (m, 1H), 1.96~1.80 (m, 2H), 1.74~1.60 (m, 3H), 1.54~1.44 (m, 1H), 1.41~1.30 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 148.9, 142.5, 132.0, 128.0, 126.6, 119.1, 117.4, 115.9, 112.1, 110.2, 75.0, 47.2, 46.4, 33.1, 26.4, 26.0, 24.8.

    6-(4-Iodophenyl)-5, 6, 6a, 7, 8, 9, 10, 11-octahydroazepino-[1, 2-a]quinazoline (Ⅲ27): Yield 93%. Viscous liquid. 1H NMR (500 MHz, CDCl3) δ: 7.48 (d, J=8.6 Hz, 2H), 7.09 (t, J=7.7 Hz, 1H), 6.99 (d, J=7.3 Hz, 1H), 6.77~6.53 (m, 4H), 4.81 (dd, J=9.9, 4.1 Hz, 1H), 4.53 (d, J=16.1 Hz, 1H), 4.32 (d, J=16.1 Hz, 1H), 3.87 (ddd, J=14.8, 6.2, 3.0 Hz, 1H), 3.34~3.05 (m, 1H), 2.23~2.08 (m, 1H), 1.96~1.78 (m, 2H), 1.77~1.58 (m, 3H), 1.48 (ddd, J=18.4, 11.9, 3.8 Hz, 1H), 1.41~1.29 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.4, 142.4, 137.9, 127.9, 126.6, 119.4, 117.4, 115.8, 110.2, 81.8, 74.8, 47.2, 46.2, 32.9, 26.4, 26.0, 24.7; HRMS (ESI) calcd for C19H21IN2Na [M+Na]+ 427.0641, found 427.0639.

    5-Phenyl-4b, 5, 12, 13-tetrahydro-6H-isoquinolino[2, 1-a]-quinazoline (Ⅲ28): Yield 88%. White solid, m.p. 139.4~141.9 ℃ (Lit.[25] 139~141 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.60 (d, J=7.4 Hz, 1H), 7.32~7.11 (m, 6H), 7.08 (t, J=7.5 Hz, 1H), 7.02 (d, J=7.2 Hz, 1H), 6.95 (d, J=8.2 Hz, 1H), 6.88 (t, J=6.6 Hz, 2H), 6.66 (t, J=7.3 Hz, 1H), 6.03 (s, 1H), 4.40 (d, J=16.6 Hz, 1H), 4.32 (d, J=16.6 Hz, 1H), 4.22 (dd, J=14.4, 5.2 Hz, 1H), 3.45 (td, J=14.2, 3.8 Hz, 1H), 3.22~3.02 (m, 1H), 2.62~2.42 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 150.9, 143.8, 137.4, 136.7, 129.3, 129.0, 127.7, 127.6, 127.0, 126.4, 126.0, 122.2, 120.8, 118.5, 118.1, 113.7, 73.9, 46.5, 45.3, 25.0.

    5-(p-Tolyl)-4b, 5, 12, 13-tetrahydro-6H-isoquinolino[2, 1-a]quinazoline (Ⅲ29): Yield 93%. White solid, m.p. 159.5~160.0 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.71 (d, J=7.5 Hz, 1H), 7.34~7.23 (m, 2H), 7.20~7.06 (m, 6H), 7.02 (d, J=8.1 Hz, 1H), 6.96 (d, J=7.0 Hz, 1H), 6.73 (t, J=7.1 Hz, 1H), 6.05 (s, 1H), 4.47 (d, J=16.7 Hz, 1H), 4.31 (dd, J=26.7, 11.2 Hz, 2H), 3.51 (t, J=11.9 Hz, 1H), 3.19 (t, J=11.8 Hz, 1H), 2.59 (d, J=16.3 Hz, 1H), 2.32 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 148.6, 143.9, 137.5, 136.7, 130.4, 129.8, 128.9, 127.6, 127.5, 126.9, 126.4, 126.0, 122.2, 119.0, 118.0, 113.6, 74.5, 46.7, 45.3, 25.0, 20.7; HRMS (ESI) calcd for C23H22N2Na [M+Na]+ 349.1675, found 349.1668.

    5-(m-Tolyl)-4b, 5, 12, 13-tetrahydro-6H-isoquinolino[2, 1-a]quinazoline (Ⅲ30): Yield 86%. White solid, m.p. 121.6~122.1 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.57 (d, J=7.5 Hz, 1H), 7.23~7.05 (m, 4H), 7.02 (d, J=7.3 Hz, 1H), 6.99~6.91 (m, 3H), 6.88 (d, J=7.3 Hz, 1H), 6.77~6.58 (m, 2H), 6.04 (s, 1H), 4.39 (d, J=16.6 Hz, 1H), 4.30 (d, J=16.7 Hz, 1H), 4.23 (dd, J=14.5, 5.3 Hz, 1H), 3.54~3.38 (m, 1H), 3.20~3.03 (m, 1H), 2.51 (dd, J=16.6, 3.4 Hz, 1H), 2.29 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 150.9, 143.8, 139.0, 137.5, 136.7, 129.2, 129.0, 127.7, 127.6, 126.9, 126.4, 126.0, 122.2, 121.6, 119.1, 118.1, 115.3, 113.7, 73.9, 46.3, 45.4, 24.9, 21.9; HRMS (ESI) calcd for C23H22N2Na [M+Na]+ 349.1675, found 349.1668.

    5-(4-Fluorophenyl)-4b, 5, 12, 13-tetrahydro-6H-isoquino- lino[2, 1-a]quinazoline (Ⅲ31): Yield 81%. White solid, m.p. 142.2~142.7 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.65 (d, J=7.6 Hz, 1H), 7.27~7.14 (m, 2H), 7.14~7.05 (m, 3H), 7.03 (d, J=7.4 Hz, 1H), 6.99~6.82 (m, 4H), 6.67 (t, J=7.3 Hz, 1H), 5.87 (s, 1H), 4.40 (d, J=16.8 Hz, 1H), 4.27~4.15 (m, 2H), 3.52~3.31 (m, 1H), 3.19~2.97 (m, 1H), 2.52 (dd, J=16.5, 3.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 158.8, 156.9, 147.3, 143.9, 137.1, 136.6, 129.0, 127.8, 127.0, 126.4, 126.1, 121.9, 121.2, 121.1, 118.2, 115.7, 115.6, 113.7, 74.8, 47.7, 45.1, 25.2; HRMS (ESI) calcd for C22H19FN2Na [M+Na]+ 353.1424, found 353.1422.

    5-(4-Chlorophenyl)-4b, 5, 12, 13-tetrahydro-6H-isoquinolino[2, 1-a]quinazoline (Ⅲ32): Yield 67%. White solid, m.p. 126.8~127.3 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.56 (d, J=7.4 Hz, 1H), 7.26~7.13 (m, 4H), 7.14~7.01 (m, 4H), 6.96 (d, J=8.3 Hz, 1H), 6.88 (d, J=7.3 Hz, 1H), 6.68 (t, J=7.3 Hz, 1H), 5.96 (s, 1H), 4.40 (d, J=16.6 Hz, 1H), 4.25 (dt, J=20.5, 7.4 Hz, 2H), 3.51~3.35 (m, 1H), 3.17~3.02 (m, 1H), 2.54 (dd, J=16.6, 3.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.4, 143.7, 136.9, 136.6, 129.1, 129.04, 127.84, 127.68, 126.97, 126.42, 125.88, 125.71, 121.7, 120.1, 118.3, 113.8, 74.0, 47.0, 45.3, 25.0; HRMS (ESI) calcd for C22H20ClN2 [M+H]+ 347.1309, found 347.1304.

    5-(4-(Trifluoromethyl)phenyl)-4b, 5, 12, 13-tetrahydro- 6H-isoquinolino[2, 1-a]quinazoline (Ⅲ33): Yield 71%. White solid, m.p. 139.8~141.7 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.54~7.39 (m, 3H), 7.25~7.08 (m, 5H), 7.07~7.01 (m, 1H), 6.98 (d, J=8.2 Hz, 1H), 6.90 (d, J=7.3 Hz, 1H), 6.69 (t, J=7.3 Hz, 1H), 6.12 (s, 1H), 4.50~4.33 (m, 2H), 4.26 (dd, J=14.5, 5.3 Hz, 1H), 3.50 (td, J=14.3, 4.0 Hz, 1H), 3.22~3.03 (m, 1H), 2.56 (dd, J=16.7, 3.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 153.0, 143.5, 136.5, 136.5, 129.2, 128.0, 127.8, 127.0, 126.7, 126.6, 126.5, 125.7, 121.6, 118.6, 116.9, 114.0, 72.8, 46.3, 45.5, 24.8; HRMS (ESI) calcd for C23H19F3N2Na [M+Na]+ 403.1392, found 403.1378.

    4-(12, 13-Dihydro-6H-isoquinolino[2, 1-a]quinazolin-5- (4bH)-yl)benzonitrile (Ⅲ34): Yield 43%. White solid, m.p. 174.6~175.1 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.53 (d, J=8.5 Hz, 2H), 7.31 (d, J=6.4 Hz, 1H), 7.12 (ddd, J=36.9, 18.5, 9.3 Hz, 6H), 7.01 (d, J=8.2 Hz, 1H), 6.92 (d, J=7.3 Hz, 1H), 6.72 (t, J=7.3 Hz, 1H), 6.17 (s, 1H), 4.52~4.36 (m, 2H), 4.29 (dd, J=14.4, 5.3 Hz, 1H), 3.61~3.46 (m, 1H), 3.23~3.07 (m, 1H), 2.67~2.51 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 153.3, 143.2, 136.4, 135.9, 133.7, 129.3, 128.1, 128.0, 127.0, 126.5, 125.4, 121.2, 119.9, 118.8, 116.3, 114.2, 101.7, 72.0, 45.9, 45.6, 24.6; HRMS (ESI) calcd for C23H19N3Na [M+Na]+ 360.1471, found 360.1465.

    Supporting Information  1H NMR and 13C NMR spectra for all compounds, HRMS spectra for novel compounds. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.


    1. [1]

      (a) Yamamoto, H.; Banerjee, A. Synfacts 2018, 14, 0845.
      (b) Yamamoto, H.; Banerjee, A. Synfacts 2018, 14, 0944.
      (c) J. Sinkkonen, J.; Zelenin, K. N.; Potapov, A. K. A.; Lagoda, I. V.; Alekseyev, V. V.; Pihlaja, K. Tetrahedron 2003, 59, 1939.

    2. [2]

      (a) Kikuchi, H.; Horoiwa, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. Eur. J. Med. Chem. 2014, 76, 10.
      (b) Koehler, R.; Goodman, L.; DeGraw, J.; Baker, B. R. J. Am. Chem. Soc. 1958, 80, 5779.
      (c) Obafemi, C. A.; Fadare, O. A.; Jasinski, J. P.; Millikan, S. P.; Obuotor, E. M.; Iwalewa, E. O.; Ceylan, Ü. J. Mol. Struct. 2018, 1155, 610.

    3. [3]

      (a) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419.
      (b) He, Y. P.; Wu, H.; Chen, D. F.; Yu, J.; Gong, L. Z. Chem.-Eur. J. 2013, 19, 5232.

    4. [4]

      Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524. doi: 10.1246/cl.2009.524

    5. [5]

      Rostamizadeh, S.; Amani, A. M.; Aryan, R.; Ghaieni, H. R.; Shadjou, N. Synth. Commun. 2008, 38, 3567. doi: 10.1080/00397910802178427

    6. [6]

      Shi, D.; Dou, G.; Zhou, Y. Synthesis 2008, 2000.

    7. [7]

      Hu, W.; Yang, W.; Yan, T.; Cai, M. Synth. Commun. 2019, 49, 799. doi: 10.1080/00397911.2019.1567788

    8. [8]

      Zhang, X.; Ye, D.; Sun, H.; Guo, D.; Wang, J.; Huang, H.; Liu, H. Green. Chem. 2009, 11, 1881. doi: 10.1039/b916124b

    9. [9]

      Liu, T.; Fu, H. Synthesis 2012, 44, 2805. doi: 10.1055/s-0032-1316763

    10. [10]

      El-Messery, S. M.; Hassan, G. S.; Nagi, M. N.; Habib, E. S. E.; Al-Rashood, S. T.; El-Subbagh, H. I. Bioorg. Med. Chem. Lett. 2016, 26, 4815. doi: 10.1016/j.bmcl.2016.08.022

    11. [11]

      Richers, M. T.; Zhao, C.; Seidel, D. Beilstein J. Org. Chem. 2013, 9, 1194. doi: 10.3762/bjoc.9.135

    12. [12]

      Sriramoju, V.; Kurva, S.; Madabhushi, S. New J. Chem. 2018, 42, 3188. doi: 10.1039/C7NJ04939K

    13. [13]

      Siddique, M. U. M.; McCann, G. J.; Sonawane, V. R.; Horley, N.; Gatchie, L.; Joshi, P.; Chaudhuri, B. Eur. J. Med. Chem. 2017, 130, 320. doi: 10.1016/j.ejmech.2017.02.032

    14. [14]

      Sarsah, S. R.; Lutz Jr, M. R.; Bobb, K. C.; Becker, D. P. Tetrahedron Lett. 2015, 56(40), 5390. doi: 10.1016/j.tetlet.2015.07.095

    15. [15]

      (a) Kirk, O.; Borchert, T. V.; Fuglsang, C. C. Curr. Opin. Biotechnol. 2002, 13, 345.
      (b) Bersaneti, G. T.; Pan, N. C.; Baldo, C.; Celligoi, M. A. P. C. Appl. Biochem. Biotechnol. 2018, 184, 838.
      (c) Singh, R. M.; Kumar, A.; Mehta, P. K. 3 Biotech 2016, 6, 174.

    16. [16]

      (a) McLennan, A. G. Cell. Mol. Life Sci. 2006, 63, 123.
      (b) Weiss, A. K. H.; Loeffler, J. R.; Liedl, K. R.; Gstach, H.; Jansen, P. Biochem. Soc. Trans. 2018, 46, 295.
      (c) Carreras-Puigvert, J.; Zitnik, M.; Jemth, A. S. Nat. Commun. 2017, 8, 1541.

    17. [17]

      Lu, Y.; Jiang, G. F.; Xie, Z. B.; Chen, G. Q.; Le, Z. G. Chin. J. Org. Chem. 2018, 38, 1837. doi: 10.6023/cjoc201801047

    18. [18]

      (a) Miao, Y.; Rahimi, M.; Geertsema, E. M.; Poelarends, G. J.; Curr. Opin. Chem. Biol. 2015, 25, 115.
      (b) List, B.; Sun, D. Synfacts 2018, 14, 1192.

    19. [19]

      Liu, L. S.; Xie, Z. B.; Zhang, C.; Fu, L. H.; Zhu, H. B.; Le, Z. G. Green Chem. Lett. Rev. 2018, 11, 503. doi: 10.1080/17518253.2018.1540726

    20. [20]

      (a) Wu, L. L.; Xiang, Y.; Yang, D. C.; Guan, Z.; He, Y. H. Catal. Sci. Technol. 2016, 6, 3963.
      (b) Guan, Z.; Song, J.; Xue, Y.; Yang, D. C.; He, Y. H. J. Mol. Catal. B. Enzym. 2015, 111, 16.
      (c) Chen, Y. J.; Xiang, Y.; He, Y. H.; Guan, Z. Tetrahedron Lett. 2019, 15, 1066.

    21. [21]

      (a) Le, Z. G.; Liang, M.; Chen, Z. S.; Zhang, S. H.; Xie, Z. B. Molecules 2017, 22, 762.
      (b) Liang, M.; Xie, Z. B.; Ai, F.; Le, Z. G. Chin. J. Org. Chem. 2016, 36, 2708.

    22. [22]

      (a) Malcata, F. X.; Reyes, H. R.; Garcia, H. S.; Hill, C. G.; Amundson, C. H. Enzyme Microb. Technol. 1992, 14, 426.
      (b) Carrea, G.; Ottolina, G.; Riva, S. Trends Biotechnol. 1995, 13, 63.

    23. [23]

      Zaks, A.; Klibanov, A. M. J. Biol. Chem. 1988, 263, 8017.

    24. [24]

      Thomas, M. T.; Scopes, K. R. Biochem. J. 1998, 330, 1087. doi: 10.1042/bj3301087

    25. [25]

      Chen, Z.; Sandip, M.; Daniel, S. J. Org. Chem. 2009, 74, 419. doi: 10.1021/jo802325x

    26. [26]

      Shen, Y. B.; Wang, L. X.; Sun, Y. M.; Dong, F. Y.; Yu, L. P.; Liu, Q.; Xiao, J. J. Org. Chem. 2020, 85, 1915. doi: 10.1021/acs.joc.9b02606

  • Scheme 1  Pepsin-catalyzed cyclocondensation of 2-aminoben- zaldehyde and aromatic amine

    Figure 1  Effect of solvent on the yield

    Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.2 mmol), aniline (0.22 mmol), pepsin (15 mg), and solvent (2 mL), stirred at 50 ℃ for 36 h. Isolated yield

    Figure 2  Effect of temperature on the yield

    Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.2 mmol), aniline (0.22 mmol), enzyme (15 mg), and 50% aqueous methanol solution (2 mL), stirred at different temperatures for 36 h. Isolated yield.

    Table 1.  Screening of enzymesa

    Entry Enzyme Yieldb/%
    1 α-Chymotrypsin 16
    2 Lipase from porcine pancreas None
    3 Alkaline protease None
    4 Lipase B from Candida antarctica None
    5 Pepsin from porcine gastric mucosa 23
    6 Trypsin from bovine pancreas 18
    7 Amano lipase M from Mucor javanicus None
    8 Proteinase from Aspergillus melleus None
    9 Denatured pepsinc None
    10 Bovine serum albumin None
    11 No enzyme None
    a Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.2 mmol), aniline (0.22 mmol), enzyme (15 mg), and ethanol (2 mL), stirred at 50 ℃ for 36 h. b Isolated yield. c Pretreated with urea solution (8 mol/L).
    下载: 导出CSV

    Table 2.  Pepsin-catalyzed synthesis of tetrahydroquinazoline derivativesa

    a Reaction conditions: 2-(1-pyrrolidinyl)benzaldehyde (0.4 mmol), aniline (0.2 mmol), pepsin (30 mg), and 50% aqueous methanol solution (2 mL), stirred at 60 ℃ for 36 h. Isolated yield.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  542
  • HTML全文浏览量:  48
文章相关
  • 发布日期:  2020-09-01
  • 收稿日期:  2020-06-05
  • 修回日期:  2020-06-12
  • 网络出版日期:  2020-06-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章