Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface

Xiaoteng Ma Guangda Han Hanying Zhao

Citation:  Xiaoteng Ma, Guangda Han, Hanying Zhao. Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface[J]. Chinese Journal of Polymer Science, 2019, 37(8): 790-796. doi: 10.1007/s10118-019-2253-9 shu

Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface

English


    1. [1]

      Caruso, F. Hollow capsule processing through colloidal templating and self-assembly. Chem. Eur. J. 2000, 6, 413-419. https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9 doi: 10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9

    2. [2]

      Tao, X.; Li, J.; Möhwald, H. Self-assembly, optical behavior, and permeability of a novel capsule based on an azo dye and polyelectrolytes. Chem. Eur. J. 2004, 10, 3397-3403. https://doi.org/10.1002/chem.200400024 doi: 10.1002/chem.200400024

    3. [3]

      Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv. Mater. 1997, 9, 570-575. https://doi.org/10.1002/adma.19970090712 doi: 10.1002/adma.19970090712

    4. [4]

      Walsh, D.; Mann, S. Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 1995, 377, 320-323. https://doi.org/10.1038/377320a0 doi: 10.1038/377320a0

    5. [5]

      Zhang, Q.; Wang, W.; Goebl, J.; Yin, Y. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494-507. https://doi.org/10.1016/j.nantod.2009.10.008 doi: 10.1016/j.nantod.2009.10.008

    6. [6]

      Tian, J.; Liu, G.; Guan, C.; Zhao, H. Amphiphilic gold nanoparticles formed at a liquid-liquid interface and fabrication of hybrid nanocapsules based on interfacial UV photodimerization. Polym. Chem. 2013, 4, 1913-1920. https://doi.org/10.1039/C2PY20967E doi: 10.1039/C2PY20967E

    7. [7]

      Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater. 2001, 13, 109-116. https://pubs.acs.org/doi/abs/10.1021/cm001164h doi: 10.1021/cm001164h

    8. [8]

      Imhof, A. Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir. 2001, 17, 3579-3585. https://pubs.acs.org/doi/abs/10.1021/la001604j doi: 10.1021/la001604j

    9. [9]

      Lou, X.; Archer, L. A.; Yang, Z. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019. https://doi.org/10.1002/adma.200800854 doi: 10.1002/adma.200800854

    10. [10]

      Tian, J.; Yuan, L.; Zhang, M.; Zheng, F.; Xiong, Q.; Zhao, H. Interface-directed self-assembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization. Langmuir 2012, 28, 9365-9371. https://pubs.acs.org/doi/10.1021/la301453n doi: 10.1021/la301453n

    11. [11]

      Sun, Y.; Mayers, B. T.; Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481?485. https://pubs.acs.org/doi/abs/10.1021/nl025531v doi: 10.1021/nl025531v

    12. [12]

      Peng, S.; Sun, S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. 2007, 46, 4233-4236. https://doi.org/10.1002/ange.200700677 doi: 10.1002/ange.200700677

    13. [13]

      Hu, Y.; Ge, J.; Sun, Y.; Zhang, T.; Yin, Y. A self-templated approach to TiO2 microcapsules. Nano Lett. 2007, 7, 1832-1836. https://pubs.acs.org/doi/abs/10.1021/nl0708157 doi: 10.1021/nl0708157

    14. [14]

      Li, Y.; Li, X.; Li, Y.; Liu, H.; Wang, S.; Gan, H.; Li, J.; Wang, N.; He, X.; Zhu, D. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: From multibilayer vesicles to hollow capsules. Angew. Chem. Int. Ed. 2006, 45, 3639-3643. https://doi.org/10.1002/anie.200600554 doi: 10.1002/anie.200600554

    15. [15]

      McDonald, C. J.; Bouck, K.J.; Chaput, A. B.; Stevens, C. J. Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules 2000, 33, 1593-1605. https://pubs.acs.org/doi/full/10.1021/ma991284e doi: 10.1021/ma991284e

    16. [16]

      Zoldesi, C. I.; Imhof, A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 2005, 17, 924-928. doi: 10.1002/(ISSN)1521-4095

    17. [17]

      Gao, G.; Park, M. J.; Li, Y.; Im, G. H.; Kim, J-H.; Kim, H. N.; Lee, J. W.; Jeon, P.; Bang, O. Y.; Lee, J. H.; Lee, D. S. The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 2012, 33, 9157-9164. https://doi.org/10.1016/j.biomaterials.2012.09.016 doi: 10.1016/j.biomaterials.2012.09.016

    18. [18]

      Gu, W.; Zhu, M.; Song, N.; Du, X.; Yang, Y.; Gao, H. Reverse micelles based on biocompatible β-cyclodextrin conjugated polyethylene glycol block polylactide for protein delivery. J. Mater. Chem. B 2015, 3, 316-322. http://dx.doi.org/10.1039/C4TB01351D doi: 10.1039/C4TB01351D

    19. [19]

      Loh, X. J.; del Barrio, J.; Lee, T. C.; Scherman, O. A. Supramolecular polymeric peptide amphiphile vesicles for the encapsulation of basic fibroblast growth factor. Chem. Commun. 2014, 50, 3033-3035. http://dx.doi.org/10.1039/c3cc49074b doi: 10.1039/c3cc49074b

    20. [20]

      van Hoof, B.; Markvoort, A. J.; van Santen, R. A.; Hilbers, P. A. J.; Molecular simulation of protein encapsulation in vesicle formation. J. Phys. Chem. B. 2014, 118, 3346-3354. http://dx.doi.org/10.1021/jp410612k doi: 10.1021/jp410612k

    21. [21]

      Mable, C. J.; Gibson, R. R.; Prevost, S.; McKenzie, B. E.; Mykhaylyk, O. O.; Armes, S. P. Loading of silica nanoparticles in block copolymer vesicles during polymerization-induced self-assembly: Encapsulation efficiency and thermally triggered release. J. Am. Chem. Soc. 2015, 137, 16098-16108. http://dx.doi.org/10.1021/jacs.5b10415 doi: 10.1021/jacs.5b10415

    22. [22]

      Qi, H.; Hu, P.; Xu, J.; Wang, A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 2006, 7, 2327-2330. http://dx.doi.org/10.1021/bm060264z doi: 10.1021/bm060264z

    23. [23]

      Conn, C. E.; Drummond, C. J. Nanostructured bicontinuous cubic lipid self-assembly materials as matrices for protein encapsulation. Soft Matter 2013, 9, 3449-3464. http://dx.doi.org/10.1039/c3sm27743g doi: 10.1039/c3sm27743g

    24. [24]

      Tan, Y. C.; Hettiarachchi, K.; Siu, M.; Pan, Y. R.; Lee, A. P. Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc. 2006, 128, 5656-5658. http://dx.doi.org/10.1021/ja056641h doi: 10.1021/ja056641h

    25. [25]

      Silva, R.; Fabry, B.; Boccaccini, A. R. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 2014, 35, 6727-6738. https://doi.org/10.1016/j.biomaterials.2014.04.078 doi: 10.1016/j.biomaterials.2014.04.078

    26. [26]

      Censi, R.; Di Martino, P.; Vermonden, T.; Hennink, W. E. Hydrogels for protein delivery in tissue engineering. J. Control. Release 2012, 161, 680-692. https://doi.org/10.1016/j.jconrel.2012.03.002 doi: 10.1016/j.jconrel.2012.03.002

    27. [27]

      Bertz, A.; Wohl-Bruhn, S.; Miethe, S.; Tiersch, B.; Koetz, J.; Hust, M.; Bunjes, H.; Menzel, H. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. J. Biotechnol. 2013, 163, 243-249. https://doi.org/10.1016/j.jbiotec.2012.06.036 doi: 10.1016/j.jbiotec.2012.06.036

    28. [28]

      Kim, C. S.; Mout, R.; Zhao, Y.; Yeh, Y. C.; Tang, R.; Jeong, Y.; Duncan, B.; Hardy, J. A.; Rotello, V. M. Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules. Bioconjugate Chem. 2015, 26, 950-954. https://doi.org/10.1021/acs.bioconjchem.5b00146 doi: 10.1021/acs.bioconjchem.5b00146

    29. [29]

      Zhang, W.; Zhang, J.; Qiao, Z.; Yin, J. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: Engineering and applications. Chinese J. Polym. Sci. 2018, 36, 273-287. https://doi.org/10.1007/s10118-018-2035-9 doi: 10.1007/s10118-018-2035-9

    30. [30]

      Han, G.; Ju, Y.; Zhao, H. Synthesis of amphiphilic block-type macromolecular brushes with cleavable pendant chains and fabrication of micelle-templated polymer nanocapsules. Polym. Chem. 2016, 7, 1197-1206. https://doi.org/10.1039/C5PY01940K doi: 10.1039/C5PY01940K

    31. [31]

      Peters, R. J. R. W.; Marguet, M.; Marais, S.; Fraaije, M. W.; van Hest, J. C. M.; Lecommandoux, S. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 2014, 53, 146-150. http://dx.doi.org/10.1002/anie.201308141 doi: 10.1002/anie.201308141

    32. [32]

      Feng, X.; Liu, J.; Xu, G.; Zhang, X.; Su, X.; Li, W.; Zhang, A. Thermoresponsive double network cryogels from dendronized copolymers showing tunable encapsulation and release of proteins. J. Mater. Chem. B. 2018, 6, 1903-1911. http://dx.doi.org/10.1039/C7TB03352D doi: 10.1039/C7TB03352D

    33. [33]

      Prasetyanto, E. A.; Bertucci, A.; Septiadi, D.; Corradini, R.; Castro-Hartmann, P.; De Cola, L. Breakable hybrid organosilica nanocapsules for protein delivery. Angew. Chem. 2016, 55, 3323-3327. https://doi.org/10.1002/ange.201508288 doi: 10.1002/ange.201508288

    34. [34]

      Shimanovich, U.; Michaels, T. C. T.; De Genst, E.; Matak-Vinkovic, D.; Dobson, C. M.; Knowles, T. P. J. Sequential release of proteins from structured multishell microcapsules. Biomacromolecules, 2017, 18, 3052-3059. https://doi.org/10.1021/acs.biomac.7b00351 doi: 10.1021/acs.biomac.7b00351

    35. [35]

      Liu, Q.; Ju, Y.; Zhao, H. Bioassemblies fabricated by coassembly of protein molecules and monotethered single-chain polymeric nanoparticles. Langmuir. 2018, 34, 13705?13712. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02895 doi: 10.1021/acs.langmuir.8b02895

    36. [36]

      Córdova, J.; Ryan, J. D.; Boonyaratanakornkit, B. B.; Clark, D. S. Esterase activity of bovine serum albumin up to 160°C: A new benchmark for biocatalysis. Enzyme Microb. Technol. 2008, 42, 278-283. https://doi.org/10.1016/j.enzmictec.2007.10.007 doi: 10.1016/j.enzmictec.2007.10.007

    37. [37]

      Grochmal, A.; Prout, L.; Makin-Taylor, R.; Prohens, R.; Tomas, S. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds. J. Am. Chem. Soc. 2015, 137, 12269-12275. https://doi.org/10.1021/jacs.5b06207 doi: 10.1021/jacs.5b06207

    38. [38]

      Minton, A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Mol. Cell. Biochem. 1983, 55, 119-140. https://doi.org/10.1007/BF00673707 doi: 10.1007/BF00673707

    39. [39]

      Han, G.; Wang, J. T.; Ji, X.; Liu, L.; Zhao, H. Nanoscale proteinosomes fabricated by self-assembly of a supramolecular protein-polymer conjugate. Bioconjugate Chem. 2017, 28, 636-641. https://doi.org/10.1021/acs.bioconjchem.6b00704 doi: 10.1021/acs.bioconjchem.6b00704

    40. [40]

      Chen, D.; Hou, W.; Wu, D.; Wu, Y.; Cheng, G.; Zhao, H. Protein-cross-linked triple-responsive polymer networks based on molecular recognition. ACS Macro Lett. 2016, 5, 1222-1226. https://doi.org/10.1021/acsmacrolett.6b00750 doi: 10.1021/acsmacrolett.6b00750

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1496
  • HTML全文浏览量:  43
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-01-28
  • 接受日期:  2019-01-01
  • 修回日期:  2019-03-03
  • 网络出版日期:  2019-04-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章