基于偶氮苯酚类的比色传感器识别阴离子

林声声 何清运 周嘉敏 招铭朋 冯宗财 余彪 宋秀美

引用本文: 林声声, 何清运, 周嘉敏, 招铭朋, 冯宗财, 余彪, 宋秀美. 基于偶氮苯酚类的比色传感器识别阴离子[J]. 应用化学, 2019, 36(12): 1447-1455. doi: 10.11944/j.issn.1000-0518.2019.12.190084 shu
Citation:  LIN Shengsheng, HE Qingyun, ZHOU Jiamin, ZHAO Mingpeng, FENG Zongcai, YU Biao, SONG Xiumei. Colorimetric Sensors for Anion Recognition Based on Benzeneazophenol[J]. Chinese Journal of Applied Chemistry, 2019, 36(12): 1447-1455. doi: 10.11944/j.issn.1000-0518.2019.12.190084 shu

基于偶氮苯酚类的比色传感器识别阴离子

    通讯作者: 宋秀美, 副教授; Tel/Fax:0759-3183722;E-mail:sxmfn@163.com; 研究方向:有机功能材料
  • 基金项目:

    国家自然科学基金(21805125)、湛江市科技计划项目(2015A020203)和大学生创新创业训练计划项目(201810579701)资助

摘要: 设计合成了3个含酚羟基数量不同的偶氮苯化合物S1、S2和S3作为传感分子,研究S1、S2和S3对阴离子的比色识别,并探讨传感分子的结构与识别阴离子能力之间的联系。结果表明:传感分子S1、S2和S3对F-、H2PO4-和AcO-比色识别灵敏度高。在CH3CN中S1、S2和S3的F-检测限达到1.25×10-7~3.62×10-7 mol/L,S2、S3对H2PO4-和AcO-的检测限也达同一数量级。S1、S2和S3对阴离子F-、H2PO4-和AcO-比色识别能力取决于阴离子的空间构型、电荷密度和碱性共同作用的结果。1H NMR滴定结果表明,识别机理是S1、S2和S3的酚羟基与阴离子形成了分子间的氢键。

English

  • 阴离子在许多生物过程中起着重要作用,例如传递基因信息的DNA与腺苷三磷酸(ATP,Adenosine Triphosphate)、具有催化作用的酶与底物或辅酶之间的相互作用都涉及到阴离子的聚集和识别过程[1-7]。一些阴离子的大量存在会对环境造成污染,例如磷酸盐肥料的过度使用会引起水质的富氧化污染, 以及由硝酸盐代谢而引起的致癌作用。又如醋酸根阴离子在血液中起调节pH值、稳定酸度的作用,其在人体内含量过高,超过人体自身代谢能力,在临床上常发生恶心、疲倦和肌肉痛性痉挛等不良反应。氟与牙齿、骨骼组织的代谢密切相关,可以避免龋齿的发生,但过量的氟会造成氟中毒[8-14]。由于阴离子在环境、医学和生命科学中发挥非常重要的作用,因此,设计和合成选择性的阴离子化学传感器对阴离子的检测、富集和治理具有重要的意义和广泛的应用前景[15-17]

    阴离子化学传感器的传感分子与阴离子间的识别主要通过疏水作用、氢键作用、偶极作用及配位作用等,其中氢键的作用尤为重要,如脲、硫脲、胺、酰胺、胍、吡咯和偶氮等化合物通过氢键与阴离子形成结合物而达到识别[18-22],比色化学传感器是以紫外可见吸收光谱的变化为输出信号,往往可以借助颜色的变化直接用裸眼观察就可以达到识别目的,比色识别因直观、检测操作简便快捷,无需借助复杂昂贵的化学测试仪器而备受青睐[23-40]

    偶氮苯基态时可发生分子内电荷转移(ICT),这类分子具有较大的偶极矩,利用其对介质环境的敏感性可望发展一类高效的阴离子显色体系,其次,偶氮类化学传感分子合成条件温和,产率高,成为近年来化学传感器研究的热点之一[41-45],然而在前人工作中,研究化学传感分子结构与识别阴离子能力之间的联系鲜有报道[46],因此,本论文利用廉价易得的原料,通过简单的重氮偶合反应,合成了3个结构简单、含羟基数量不同的偶氮苯酚分子作为传感分子,探讨传感分子结构对阴离子识别能力影响,旨在为传感分子结构的设计提供一定理论指导。

    Bruker-AR400型超导核磁共振仪(NMR,瑞士Bruker公司),CDCl3作溶剂,TMS为内标;Perkin Elmer 2400-Ⅱ型元素分析仪(美国珀金埃尔默公司);Thermo LCQ DECA XP MAX型质谱仪(MS,美国热电公司);Nicolet 6700型傅里叶变换红外光谱仪(FT-IR,美国热电公司);WR S-2A型微机熔点仪(上海精密科学仪器公司);UV-3600型紫外-可见-近红外分光光度计(UV-Vis-NIR,日本岛津公司)。间苯二酚、邻氨基苯酚、苯酚(分析纯,国药集团试剂公司),3-溴苯胺、四丁基铵盐阴离子试剂(分析纯,阿拉丁试剂),乙腈、甲醇(色谱纯,阿拉丁试剂),其它试剂均为市售分析纯。

    3'-溴-2, 4-二羟基偶氮苯(S2)合成  100 mL烧杯中加入3-溴苯胺(6 mmol)和8 mL 20% HCl,在冰浴条件下向上述悬浊液中缓慢滴加NaNO2(6.6 mmol)水溶液,混合溶液由浑浊逐渐变澄清。重氮反应结束后,加入适量尿素将过量亚硝酸消耗掉,再用醋酸钠固体调节体系pH=5,得澄清液置于冰水中备用。间苯二酚(6 mmol)用pH≈11 NaOH水溶液溶解,接着缓慢滴加到重氮盐溶液中,控制体系pH值8~10,TLC跟踪反应至原料点消失后终止反应,抽滤得固体粗产物,粗产物柱层析得到目标化合物S2。橙红色固体,产率72.1%;mp 156.6~157.1 ℃;1H NMR(DMSO-d6, 400 MHz), δ:6.38(s, 1H, Ar—H), 6.47~6.50(m, 1H, Ar—H), 7.47~7.51(t, J=8.8 Hz, 1H, Ar—H), 7.62(d, J=8.8 Hz, 1H, Ar—H), 7.67(d, J=8.8 Hz, 1H, Ar—H), 7.87(d, J=8.8 Hz, 1H, Ar—H), 8.09(s, 1H, Ar—H), 10.64(s, 1H, OH), 11.82(s, 1H, OH);13C NMR(DMSO, 100 MHz), δ:103.4, 109.7, 122.9, 123.0, 123.3, 128.1, 131.7, 132.7, 132.9, 152.7, 157.6, 164.1;IR(KBr), σ/cm-1:3195(m), 3056(w), 1620(s), 1584(m), 1507(s), 1480(s), 1429(m), 1238(s), 1121(s);ESI-MS m/z:292.82([M+H]+);计算值(C12H9BrN2O2)/%:C 49.17, H 3.09, N 9.56;实测值/%:C 49.00, H 3.10, N 9.32。合成路线见图 1

    图 1

    图 1.  传感分子S2合成路线及S1和S3分子结构
    Figure 1.  Synthesis of sensing molecule S2 and molecular structures of S1 and S3

    偶氮苯酚传感分子S1与S3按照文献[47-48]方法制备,S1收率75.8%,158.3~159.9 ℃,文献值[47]55.3%,mp 158.0~159.5 ℃。S3收率85.2%,mp 203.7~204.5 ℃,文献值[48]80.2%,mp 204.5~204.9 ℃。

    为研究传感分子S1、S2和S3对不同阴离子的响应情况,将传感分子S1、S2和S3配制成2.0×10-5 mol/L的CH3CN溶液,分别滴加5倍物质的量浓度为2×10-2 mol/L F-、Cl-、Br-、I-、HSO4-、H2PO4-、NO3-和AcO-8种离子的四丁基铵溶液。S1加入F-后,溶液由无色变为黄色,加入H2PO4-、AcO-也出现了颜色变化,但不如加入F-变化明显,S2和S3加入F-、H2PO4-和AcO-,溶液均由浅黄色变为深黄色,而加入10倍物质的量浓度为2×10-2 mol/L其它阴离子,溶液的颜色未发生变化。比色识别实验结果初步说明传感分子S1、S2和S3可以定性地将F-、H2PO4-和AcO-与其它5种阴离子区分开来(图 2)。

    图 2

    图 2.  传感分子S3(2×10-5 mol/L)在CH3CN溶液中与阴离子作用后颜色变化
    Figure 2.  Colour changes of sensing molecule S3(2×10-5 mol/L in CH3CN) after different anions addition

    图 3A是在S1-CH3CN溶液中逐渐加入F-引起S1的紫外可见吸收光谱的变化图。未加入F-前,S1在波长为349 nm出现强吸收峰,加入F-后,400~550 nm处出现新的吸收峰,随着加入F-浓度的增大,400~550 nm吸收峰逐渐增高,溶液颜色明显加深,这是因为S1酚羟基与F-形成了氢键,该过程属于ICT过程。当加入H2PO4-和AcO-两种阴离子时,出现类似的变化,但S1对以上两种离子比色识别能力逊色许多。传感分子S2和S3同样能对F-、H2PO4-和AcO-进行比色识别,不同的是,S2和S3对H2PO4-和AcO-比色识别响应灵敏度远远超过S1(图 3)。

    图 3

    图 3.  S1-S3(2×10-5 mol/L)在CH3CN溶液中紫外-可见滴定曲线图

    A.S1+F-; B.S1+H2PO4-; C.S1+AcO-; D.S2+F-; E.S2+H2PO4-; F.S2+AcO-; G.S3+F-; H.S3+H2PO4-; I.S3+AcO-

    Figure 3.  UV-Vis spectra of S1-S3(2×10-5 mol/L in CH3CN) upon titration with increasing concentrations of anion

    当往传感分子与阴离子配合的CH3CN溶液中不断滴加少量质子溶剂甲醇,随着甲醇加入量增多,配合物吸收峰(400~550 nm处)逐渐减弱(图 4),溶液颜色逐渐变回传感分子溶液的颜色,表明了配合物的解离,这是甲醇与传感分子竞争结合阴离子所导致的,此现象说明传感分子与阴离子形成的配合物是通过氢键作用维系着的。

    图 4

    图 4.  S3(2×10-5 mol/L)与4倍物质的量F-在CH3CN溶液中的CH3OH滴定紫外曲线图
    Figure 4.  UV-Vis spectra of S3(2×10-5 mol/L) and 4 times the amount of F- in CH3CN upon titration with increasing amount of CH3OH

    紫外可见滴定的吸收光谱中出现数目不等的等吸收点,表明传感分子和阴离子之间生成了具有确定化学计量比的配合物。采用等摩尔连续变化法,控制受体和阴离子的总浓度为100 μmol/L,测定其紫外可见吸收光谱,绘制Job's曲线。图 5是S2与F-的Job's曲线图,紫外可见最大吸收值在最大摩尔分数比对应的值为0.5处,表明S2与F-形成化学计量比为1: 1的配合物。S1、S2和S3与F-形成的配合物化学计量比分别为1: 1、1: 1和1: 2,S1、S2和S3与AcO-形成的配合物化学计量比分别为2: 1、1: 1和2: 3,S1、S2和S3与H2PO4-形成的配合物化学计量比分别为1: 1、1: 2和1: 3。

    图 5

    图 5.  传感分子S2与F-的Job's曲线
    Figure 5.  Job's plot for the evolution of binding stoichiometry between S2 and F-

    传感分子与阴离子结合程度决定着传感分子对阴离子的识别能力强弱,为了进一步研究传感分子S1、S2和S3与F-、H2PO4-和AcO-3种阴离子的结合能力,结合紫外-可见滴定光谱的数据,采用线性拟合,根据Benesi-Hilderbrand方程求出S1、S2和S3分别与F-、H2PO4-和AcO-形成的各个配合物的结合常数(图 6)。

    图 6

    图 6.  CH3CN中S2与F-作用469 nm处吸收值变化Benesi-Hilderbrand图
    Figure 6.  Benesi-Hilderbrand plot of S2 binding with F- associated with absorbance change at 469 nm in CH3CN

    表 1各配合物的结合常数可得出以下规律及其结论:

    表 1

    表 1  S1、S2和S3与F-、H2PO4-和AcO-的结合常数(Ka/(L ·mol-1))
    Table 1.  The combination constants(Ka/(L ·mol-1)) for S1, S2 and S3 with F-, H2PO4-and AcO-, respectively
    下载: 导出CSV
    S1 S2 S3
    F- 1.07×104 1.50×104 4.65×104
    H2PO4- 2.90×103 1.59×104 3.82×104
    AcO- 1.16×103 1.92×104 3.93×104

    1) 同一传感分子与不同阴离子的结合能力表现为:S1与不同阴离子结合能力顺序为F-≫H2PO4-≈AcO-,S2与S3识别F-、H2PO4-和AcO-的能力无明显差异。出现以上现象的原因为:F-、H2PO4-和AcO-3种离子空间构型分别为球体、四面体和平面三角形,3种离子的碱性顺序为:F-<H2PO4-<AcO-,当3种阴离子分别与S1作用时,虽然F-碱性较弱,但由于F-电负性比较大,而且它是球形的空间构型,电荷比较集中,电荷密度比较大,所以结合传感分子的能力远超过H2PO4-和AcO-。H2PO4-和AcO-虽然电负性和电荷密度不及F-小,但碱性强于F-,S2和S3酚羟基数量增多,酸性增强,有利于对H2PO4-和AcO-识别。

    2) 相同阴离子与不同传感分子结合能力差异表现为:当阴离子为F-时,S1、S2和S3与它的结合常数为同一数量级,传感分子对F-识别能力顺序是S3>S2>S1。当阴离子为H2PO4-和AcO-时,传感分子对H2PO4-和AcO-识别能力S3>S2≫S1。出现此结果的原因为:随着传感分子酚羟基数目增多,一方面,一分子F-或AcO-与同一苯环互为间位两个酚羟基(S2与S3)同时形成两个氢键,一定程度上增强传感分子对F-或AcO-识别能力,另一方面,无论H2PO4-还是AcO-,传感分子S1、S2和S3酸性增强非常明显,因此,S1、S2和S3识别这两种阴离子的能力逐渐递增。

    总之,传感分子S1、S2和S3对阴离子F-、H2PO4-和AcO-识别能力取决于阴离子的空间构型、电荷密度和碱性共同作用的结果。

    CH3CN溶液中S1、S2和S3的F-、H2PO4-和AcO-检测限如表 2所示,3个传感分子的F-检测限(LOD=3σ/k)达到1.25×10-7~3.62×10-7 mol/L,S2、S3的H2PO4-和AcO-的检测限达同一数量级,与已报道其他传感分子的F-、H2PO4-和AcO-检测限相比,S1、S2和S3的F-、H2PO4-和AcO-检测限也毫不逊色[43, 49-51]

    表 2

    表 2  CH3CN溶液中S1、S2和S3对F-、H2PO4-和AcO-的检测限(mol/L)
    Table 2.  The detection limit(mol/L) of S1, S2 and S3 in CH3CN for F-, H2PO4-and AcO-
    下载: 导出CSV
    S1 S2 S3
    F- 3.62×10-7 2.24×10-7 1.25×10-7
    H2PO4- 1.33×10-6 2.22×10-7 1.52×10-7
    AcO- 3.34×10-6 1.75×10-7 1.48×10-7

    为研究传感器传感分子与阴离子的作用机理,通过核磁滴定考察了传感分子在DMSO-d6溶液中与阴离子作用后发生氢谱信号的变化。以F-滴定传感分子S3与为例,当滴加少量的F-时,F-与传感分子S3通过氢键结合,Ha、Hb和Hc 3个氢的化学位移峰强度减弱。随着滴入F-的量增加,传感分子S3的Ha、Hb和Hc发生了去质子化,导致Ha、Hb和Hc3个峰消失,继续滴加F-至4.0倍物质的量时,在δ 16.3处出现S3分子去质子化产生了HF2-信号峰,去质子化过程使得受体分子的电荷密度增高,屏蔽效益增强,因此苯环上C—H化学位移向高场移动(图 7)。

    图 7

    图 7.  S3(2×10-2 mol/L) DMSO-d6溶液中滴加不同量F-1H NMR图
    Figure 7.  1H NMR spectra of sensing molecule S3 in DMSO-d6(2×10-2 mol/L) upon addition of different amounts of F-

    核磁滴定实验表明,在F-浓度较低时,S3与F-通过氢键作用相结合,高浓度时,由于氟离子的电负性较大,则发生质子化过程。当向传感分子S3溶液滴加入低浓度F-时,F-先与S3的酚羟基通过氢键作用相结合,一分子F-与同一苯环上互为间位两个O—H氢键作用形成六元环,另一分子F-与另一苯环上O—H形成氢键,形成摩尔比1: 2的配合物,随着F-量的增加,S3上3个活泼氢发生去质子,并有HF2-生成。由此可推出探针分子S3与F-、H2PO4-和AcO-的作用机理如图 8所示。

    图 8

    图 8.  传感分子S3与阴离子作用机理图
    Figure 8.  Proposed reaction mechanism of sensing molecule S3 with anion

    设计合成了3个结构简单、含羟基数量不同的偶氮苯化合物S1、S2和S3,以它们作为传感分子对F-、Cl-、Br-、I-、HSO4-、H2PO4-、NO3-和AcO-阴离子比色识别,并探讨传感分子结构对阴离子识别能力的影响,研究结果表明:在CH3CN中S1、S2和S3对F-、H2PO4-和AcO-比色识别灵敏度很高,S1、S2和S3的F-检测限达到1.25×10-7~3.62×10-7 mol/L,S2、S3对H2PO4-和AcO-的检测限达同一数量级。S1、S2和S3对F-、H2PO4-和AcO-比色识别能力取决于阴离子的空间构型、电荷密度和碱性共同作用的结果。这将为传感器传感分子结构设计提供一定的理论指导。


    1. [1]

      Gale P A. Anion Receptor Chemistry[J]. Chem Comun, 2011, 47(1):  82-86. doi: 10.1039/C0CC00656D

    2. [2]

      Sun H, Dong X, Liu S. Excellent BODIPY Dye Containing Dimesitylboryl Groups as Pet Based Fluorescent Probes for Fluoride[J]. J Phys Chem C, 2011, 115(40):  19947-19954. doi: 10.1021/jp206396v

    3. [3]

      Li S, Zhang C, Huang S. Highly Selective Colorimetric and Fluorescent Sensors for the Fluoride Anion Based on Imidazo[4, 5-f]-1, 10-phenanthroline Metal-Complexes[J]. RCS Adv, 2012, 2:  4215-4219.

    4. [4]

      Yong X, Su M, Wan W. 2-Thiohydantoin Containing OH and NH Recognition Subunits:A Fluoride Ion Selective Colorimetric Sensor[J]. New J Chem, 2013, 37(5):  1591-1594. doi: 10.1039/c3nj41134f

    5. [5]

      Li X G, Zhang D, Li J. Emission "Off-On" Effect from Curopium Complexes Triggered by AcO Anion:Synthesis, Characterization and Sensing Performance[J]. Spectrochim Acta, Part A, 2014, 127:  1-9. doi: 10.1016/j.saa.2014.02.042

    6. [6]

      Khan S S, Riaz M. Determination of UV Active Inorganic Anions in Potable and High Salinity Water by Ion Pair Reversed Phase Liquid Chromatography[J]. Talanta, 2014, 122:  209-213. doi: 10.1016/j.talanta.2014.01.059

    7. [7]

      Hu B B, Lu P, Wang Y G. A Highly Selective and Real-Time Ratiometric Fluorescent Chemosensor for Fluoride Anion Detection under Either Neutral or Basic Condition[J]. Sens Actuators, B, 2014, 195:  320-323. doi: 10.1016/j.snb.2014.01.058

    8. [8]

      Guha S, Saha S. Fluoride Ion Sensing by an Anion-π Interaction[J]. J Am Chem Soc, 2010, 132(50):  17674-17677. doi: 10.1021/ja107382x

    9. [9]

      Xu W, Liu S, Sun H. FRET-Based Probe for Fluoride Based on a Phosphorescent Rridium(Ⅲ) Complex Containing Triarylboron Groups[J]. J Mater Chem, 2011, 21(21):  7572-7581. doi: 10.1039/c1jm00071c

    10. [10]

      Baker J L, Sudarsan N, Weinberg Z. Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride[J]. Science, 2012, 335(6065):  233-235. doi: 10.1126/science.1215063

    11. [11]

      Aboubakr H, Brisset H, Siri O. Highly Specific and Reversible Fluoride Sensor Based on an Organic Semiconductor[J]. Anal Chem, 2013, 85(20):  9968-9974. doi: 10.1021/ac4027934

    12. [12]

      Iniya M, Jeyanthi D, Krishnaveni K. A Bifunctional Chromogenic and Fluorogenic Probe for F- and Al3+ Based on Azo-Benzimidazole Conjugate[J]. J Lumin, 2015, 157:  383-389. doi: 10.1016/j.jlumin.2014.09.018

    13. [13]

      Padhan S K, Podh M B, Sahu P K. Optical Discrimination of Fluoride and Cyanide Ions by Coumarin-Salicylidene Based Chromofluorescent Probes in Organic and Aqueous Medium[J]. Sens Actuators, B, 2018, 255:  1376-1390. doi: 10.1016/j.snb.2017.08.133

    14. [14]

      Li Z Y, Su H K, Tong H X. Calix [4] arene Containing Thiourea and Coumarin Functionality as Highly Selective Fluorescent and Colorimetric Chemosensor for Fluoride Ion[J]. Spectrochim Acta, Part A, 2018, 200:  307-312. doi: 10.1016/j.saa.2018.04.040

    15. [15]

      Lin Q, Yang Q P, Sun B. A Highly Selective and Sensitive Fluorescence Turn-On Fluoride Ion Sensor[J]. RSC Adv, 2015, 5:  11786-11790. doi: 10.1039/C4RA09624J

    16. [16]

      Kumar G G V, Kesavan M P, Sivaraman G. Colorimetric and NIR Fluorescence Receptors for F- Ion Detection in Aqueous Condition and Its Live Cell Imaging[J]. Sens Actuators, B, 2018, 255:  3194-3206. doi: 10.1016/j.snb.2017.09.145

    17. [17]

      Wang R, Ma Y S, Zhao J F. Novel Hydroxyl-Substituted Perylene-3, 4, 9, 10-Tetracarboxylic Acid Diimides for Selective Recognition of Fluoride[J]. Sens Actuators, B, 2018, 260:  719-726. doi: 10.1016/j.snb.2017.12.171

    18. [18]

      Ashokkumar P, Ramakrishnan V T, Ramamurthy P. Fluorescence Spectroscopic Evidence for Hydrogen Bonding and Deprotonation Equilibrium Between Fluoride and a Thiourea Derivative[J]. Chem Eur J, 2010, 44(16):  13271-13277.

    19. [19]

      Mahapatra A K, Karmakar P, Roy J. Colorimetric and Ratiometric Fluorescent Chemosensor for Fluoride Ions Based on Phenanthroimidazole(PI):Spectroscopic, NMR and Density Functional Studies[J]. RSC Adv, 2015, 47(5):  37935-37942.

    20. [20]

      Wu Y C, You J Y, Jiang K. Colorimetric and Ratiometric Fluorescent Sensor for F- Based on Benzimidazole-Naphthalene Conjugate:Reversible and Reusable Study & Design of Logic Gate Function[J]. Dyes Pigm, 2017, 140:  47-55. doi: 10.1016/j.dyepig.2017.01.025

    21. [21]

      Wu Y C, Huo J P, Cao L. Design and Application of Tri-Benzimidazolyl Star-Shape Molecules as Fluorescent Chemosensors for the Fast-Response Detection of Fluoride Ion[J]. Sens Actuators, B, 2016, 237:  865-875. doi: 10.1016/j.snb.2016.07.028

    22. [22]

      Singh H, Bhargava G, Kumar S. Microstructural (Self-assembly) and Optical Based Discrimination of Hg2+, CN- and Hg(CN)2 Ion-Pair; Hg2+ Promoted-ESIPT Assisted Guanylation of Thiourea[J]. Sens Actuators, B, 2018, 272:  43-52. doi: 10.1016/j.snb.2018.05.104

    23. [23]

      Wang S X, Meng X M, Zhu M Z. A Naked-eye Rhodamine-Based Fluorescent Probe for Fe(Ⅲ) and Its Application in Living Cells[J]. Tetrahedron Lett, 2011, 52(22):  2840-2843. doi: 10.1016/j.tetlet.2011.03.104

    24. [24]

      Bera R K, Raj C R. Naked Eye Sensing of Melamine Using Rationally Tailored Gold Nanoparticles:Hydrogen-Bonding and Charge-Transfer Recognition[J]. Analyst, 2011, 136(8):  1644-1648. doi: 10.1039/c0an00870b

    25. [25]

      Bao Y, Liu B, Wang H. A "Naked Eye" and Ratiometric Fluorescent Chemosensor for Rapid Detection of F- Based on Combination of Desilylation Reaction and Excited-State Proton Transfer[J]. Chem Commun, 2011, 47(13):  3957-3959. doi: 10.1039/c1cc00034a

    26. [26]

      Zhou X, Yan W, Zhao T. Rhodamine Based Derivative and Its Zinc Complex:Synthesis and Recognition Behavior Toward Hg(Ⅱ)[J]. Tetrahedron, 2013, 69(46):  9535-9539. doi: 10.1016/j.tet.2013.09.049

    27. [27]

      Kim K B, Kim H, Song E J. A Cap-Type Schiff Base Acting as a Fluorescence Sensor for Zinc(Ⅱ) and a Colorimetric Sensor for Iron(Ⅱ), Copper(Ⅱ), and Zinc(Ⅱ) in Aqueous Media[J]. Dalton Trans, 2013, 42(47):  16569-16577. doi: 10.1039/c3dt51916c

    28. [28]

      Shyamaprosad G, Maity S, Das A K. Remarkable ESIPT Induced NIR Emission by a Selective Colorimetric Dibenzimidazolo Diimine Sensor for Acetate[J]. Tetrahedron Lett, 2013, 54(38):  5232-5235. doi: 10.1016/j.tetlet.2013.07.078

    29. [29]

      Gong Y N, Lu T B. Fast Detection of Oxygen by the Naked Eye Using a Stable Metal-Organic Framework Containing Methyl Viologen Cations[J]. Chem Commun, 2013, 49(70):  7711-7713. doi: 10.1039/c3cc42268b

    30. [30]

      Zhu J, Yang X, Zhang L. A Visible Multi-Digit DNA Keypad Lock Based on Split G-Quadruplex DNAzyme and Silver Microspheres[J]. Chem Commun, 2013, 49(48):  5459-5461. doi: 10.1039/c3cc42028k

    31. [31]

      Pandurangan K, Kitchen J A, Gunnlaugsson T. Colorimetric Naked-eye' Sensing of Anions Using a Thiosemicarbazide Receptor:A Case Study of Recognition Through Hydrogen Bonding Versus Deprotonation[J]. Tetrahedron Lett, 2013, 54(22):  2770-2775. doi: 10.1016/j.tetlet.2013.02.107

    32. [32]

      Vinithra G, Suganya S, Velmathi S. Naked Eye Sensing of Anions Using Thiourea Based Chemosensors with Real Time Application[J]. Tetrahedron Lett, 2013, 54(41):  5612-5615. doi: 10.1016/j.tetlet.2013.08.005

    33. [33]

      Batista R M F, Oliveira E, Costa S P G. Cyanide and Fluoride Colorimetric Sensing by Novel Imidazo-Anthraquinones Functionalized with Indole and Carbazole[J]. Supramol Chem, 2014, 26(2):  71-80. doi: 10.1080/10610278.2013.824082

    34. [34]

      Ding L, Wu M J, Li Y R. New Fluoro- and Chromogenic Chemosensors for the Dual-channel Detection of Hg2+ and F-[J]. Tetrahedron Lett, 2014, 55(34):  4711-4715. doi: 10.1016/j.tetlet.2014.06.094

    35. [35]

      Satheshkumar A, El-Mossalamy E H, Manivannan R. Anion Induced Azo-Hydrazone Tautomerism for the Selective Colorimetric Sensing of Fluoride Ion[J]. Spectrochim Acta, Part A, 2014, 128:  798-805. doi: 10.1016/j.saa.2014.02.200

    36. [36]

      Parthiban C, Elango K P. Amino-Naphthoquinone and Its Metal Chelates for Selective Sensing of Fluoride Ions[J]. Sens Actuators, B, 2015, 215:  544-552. doi: 10.1016/j.snb.2015.03.105

    37. [37]

      Liu X M, Li Y P, Zhang Y H. Ratiometric Fluorescence Detection of Fluoride Ion by Indole-Based Receptor[J]. Talanta, 2015, 131:  597-602. doi: 10.1016/j.talanta.2014.08.017

    38. [38]

      Yang X F, Zheng L Y, Xie L J. Colorimetric and On-Off Fluorescent Chemosensor for Fluoride Ion Based on Diketopyrrolopyrrole[J]. Sens Actuators B, 2015, 207:  9-24. doi: 10.1016/j.snb.2014.10.095

    39. [39]

      Choi Y W, Lee J J, You G R. Chromogenic Naked-Eye Detection of Copper Ion and Fluoride[J]. RSC Adv, 2015, 5(105):  86463-86472. doi: 10.1039/C5RA16301C

    40. [40]

      Yeung M C L, Yam V W W. Luminescent Cation Sensors:From Host-Guest Chemistry, Supramolecular Chemistry to Reaction-Based Mechanisms[J]. Chem Soc Rev, 2015, 44(13):  4192-4202. doi: 10.1039/C4CS00391H

    41. [41]

      Lee H, Lee S S. Thiaoxaaza-Macrocyclic Chromoionphores as Mercury(Ⅱ) Sensors:Synthesis and Color Modulation[J]. Org Lett, 2009, 11(6):  1393-1396. doi: 10.1021/ol900241p

    42. [42]

      Suganya S, Velmathi S. Simple Azo-Based Salicylaldimine as Colorimetric and Fluorescent Probe for Detecting Anions in Semi-aqueous Medium[J]. J Mol Recognit, 2013, 26(6):  259-267. doi: 10.1002/jmr.2268

    43. [43]

      Hamid K, Khatereh R. Naked-Eye Detection of Inorganic Fluoride in Aqueous Media Using a New Azo-Azomethine Colorimetric Receptor Enhanced by Electron Withdrawing Groups[J]. RSC Adv, 2014, 4(2):  1032-1038. doi: 10.1039/C3RA42709A

    44. [44]

      Udhayakumari D, Velmathi S. Azo Linked Thiourea Based Effective Dual Sensor and Its Real Samples Application in Aqueous Medium[J]. Sens Actuators, B, 2015, 209:  462-469. doi: 10.1016/j.snb.2014.11.139

    45. [45]

      Simon D, Kannapiran R K. A Symmetrical Luminol Based Azo Derivative for Trimodal Ratiometric Hg2+ Sensing and Its Application to Bioimaging in Living Cells[J]. J Photochem Photobiol A, 2018, 364:  773-786. doi: 10.1016/j.jphotochem.2018.07.013

    46. [46]

      Lee K H, Lee H Y, Lee D H. Fluoride-Selective Chromogenic Sensors Based on Azophenol[J]. Terahedron Lett, 2001, 42(32):  5447-5449. doi: 10.1016/S0040-4039(01)01011-5

    47. [47]

      宋秀美, 冯宗财, 汪朝阳. D-π-A型偶氮苯衍生物合成、表征及其光致变色性能一种超支化偶氮聚氨酯的合成及其光致变色性能[J]. 功能材料, 2015,46,(9): 09114-09119. SONG Xiumei, FENG Zongcai, WANG Zhaoyang. Synthesis, Characterization and Photochromic Properties of D-π-A Azobenzene Derivatives[J]. J Funct Mater, 2015, 46(9):  09114-09119.

    48. [48]

      宋秀美, 冯宗财, 王跃川. 2, 4, 2'-三羟基偶氮苯的合成及掺杂薄膜的光致异构性能[J]. 高分子材料科学与工程, 2014,30,(6): 38-41. SONG Xiumei, FENG Zongcai, WANG Yuechuan. Synthesis and Photoisomerization of Film Containing 2, 4, 2'-Trihydroxyazobenzene[J]. Polym Mater Sci Eng, 2014, 30(6):  38-41.

    49. [49]

      Niu H, Shu Q H, Jin S H. A Simple Ratiometric and Colorimetric Chemosensor for the Selective Detection of Fluoride in DMSO Buffered Solution[J]. Spectrochim Acta, Part A, 2016, 153:  194-198. doi: 10.1016/j.saa.2015.08.030

    50. [50]

      Sarkar A, Bhattacharyya S, Mukherjee A. Colorimetric Detection of Fluoride Ions by Anthraimidazoledione Based Sensors in the Presence of Cu(Ⅱ) Ions[J]. Dalton Trans, 2016, 45:  1166-1175. doi: 10.1039/C5DT03209A

    51. [51]

      Gupta N, Singhal D, Singh A K. Highly Selective Colorimetric and Reversible Fluorometric Turn-Off Sensors Based on the Pyrimidine Derivative:Mimicking Logic Gate Operation and Potential Applications[J]. New J Chem, 2016, 40:  641-650. doi: 10.1039/C5NJ02118A

  • 图 1  传感分子S2合成路线及S1和S3分子结构

    Figure 1  Synthesis of sensing molecule S2 and molecular structures of S1 and S3

    图 2  传感分子S3(2×10-5 mol/L)在CH3CN溶液中与阴离子作用后颜色变化

    Figure 2  Colour changes of sensing molecule S3(2×10-5 mol/L in CH3CN) after different anions addition

    图 3  S1-S3(2×10-5 mol/L)在CH3CN溶液中紫外-可见滴定曲线图

    Figure 3  UV-Vis spectra of S1-S3(2×10-5 mol/L in CH3CN) upon titration with increasing concentrations of anion

    A.S1+F-; B.S1+H2PO4-; C.S1+AcO-; D.S2+F-; E.S2+H2PO4-; F.S2+AcO-; G.S3+F-; H.S3+H2PO4-; I.S3+AcO-

    图 4  S3(2×10-5 mol/L)与4倍物质的量F-在CH3CN溶液中的CH3OH滴定紫外曲线图

    Figure 4  UV-Vis spectra of S3(2×10-5 mol/L) and 4 times the amount of F- in CH3CN upon titration with increasing amount of CH3OH

    图 5  传感分子S2与F-的Job's曲线

    Figure 5  Job's plot for the evolution of binding stoichiometry between S2 and F-

    图 6  CH3CN中S2与F-作用469 nm处吸收值变化Benesi-Hilderbrand图

    Figure 6  Benesi-Hilderbrand plot of S2 binding with F- associated with absorbance change at 469 nm in CH3CN

    图 7  S3(2×10-2 mol/L) DMSO-d6溶液中滴加不同量F-1H NMR图

    Figure 7  1H NMR spectra of sensing molecule S3 in DMSO-d6(2×10-2 mol/L) upon addition of different amounts of F-

    图 8  传感分子S3与阴离子作用机理图

    Figure 8  Proposed reaction mechanism of sensing molecule S3 with anion

    表 1  S1、S2和S3与F-、H2PO4-和AcO-的结合常数(Ka/(L ·mol-1))

    Table 1.  The combination constants(Ka/(L ·mol-1)) for S1, S2 and S3 with F-, H2PO4-and AcO-, respectively

    S1 S2 S3
    F- 1.07×104 1.50×104 4.65×104
    H2PO4- 2.90×103 1.59×104 3.82×104
    AcO- 1.16×103 1.92×104 3.93×104
    下载: 导出CSV

    表 2  CH3CN溶液中S1、S2和S3对F-、H2PO4-和AcO-的检测限(mol/L)

    Table 2.  The detection limit(mol/L) of S1, S2 and S3 in CH3CN for F-, H2PO4-and AcO-

    S1 S2 S3
    F- 3.62×10-7 2.24×10-7 1.25×10-7
    H2PO4- 1.33×10-6 2.22×10-7 1.52×10-7
    AcO- 3.34×10-6 1.75×10-7 1.48×10-7
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  426
  • HTML全文浏览量:  105
文章相关
  • 发布日期:  2019-12-10
  • 收稿日期:  2019-04-01
  • 接受日期:  2019-07-11
  • 修回日期:  2019-06-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章