Surface-enhanced Raman Scattering Effect of Ordered Gold Nanoparticle Array for Rhodamine B with Different Morphologies

Xi-hong Zu Zhi-hui Jian Guo-bin Yi Hai-liang Huang Ben-bin Zhong Hong-sheng Luo Jia-rong Huang Cui Wang

Citation:  Xi-hong Zu, Zhi-hui Jian, Guo-bin Yi, Hai-liang Huang, Ben-bin Zhong, Hong-sheng Luo, Jia-rong Huang, Cui Wang. Surface-enhanced Raman Scattering Effect of Ordered Gold Nanoparticle Array for Rhodamine B with Different Morphologies[J]. Chinese Journal of Polymer Science, 2015, 33(10): 1470-1476. doi: 10.1007/s10118-015-1690-3 shu

Surface-enhanced Raman Scattering Effect of Ordered Gold Nanoparticle Array for Rhodamine B with Different Morphologies

    通讯作者: Guo-bin Yi,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 51203025, 51273048 and 51203191).

摘要: In this study, well-ordered gold nanoparticle array on silicon substrate was adopted as an active surface-enhanced Raman scattering substrate for detecting rhodamine B (RB), and the influence of RB morphologies on surface-enhanced Raman scattering (SERS) properties was discussed. The Au nanoparticle array was prepared by using patterned P4VP nanodomains of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer thin films as nanoreactors which is a simple and economical approach. The results show that Raman spectra of RB on the Au nanopaticle array have much stronger intensity than those on the bare silicon substrate by detecting same RB solution. It indicates that the prepared Au nanoparticle array on silicon substrate has a significant Raman enhancement for RB. Interestingly, the Raman intensity of RB from its ethanol solution is much stronger than that from its aqueous solution due to the special morphologies of RB formed in their ethanol solutions. This work provides an effective approach to prepare highly sensitive and stable surface-enhanced Raman scattering substrate.

English


    1. [1]

      Long, K.L., Luo, X.G., Nan, H.Y., Du, D.Y., Zhao, W.W., Ni, Z.H. and Qiu, T., Appl. Phys. Lett., 2013, 114: 183520

    2. [2]

      Jha, S.K., Ahmed, Z., Agio, M., Ekinci, Y. and Lffler, J.F., J. Am. Chem. Soc., 2012, 134: 1966

    3. [3]

      Osinkina, L., Lohmller, T., Jckel, F. and Feldmann, J., J. Phys. Chem. C, 2013, 117: 22198

    4. [4]

      Li, J.F., Huang, Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Wu, D.Y., Ren, B., Wang, Z.L. and Tian, Z.Q., Nature, 2010, 464: 392

    5. [5]

      Singh, J.P., Lanier, T.E., Zhu, H., Dennis, W.M., Tripp, R.A. and Zhao, Y.P., J. Phys. Chem. C, 2012, 116: 20550

    6. [6]

      Ranjan, M. and Facsko, S., Nanotechnology, 2012, 23: 485307

    7. [7]

      Chen, G., Wang, Y., Yang, M.X., Xu, J., Goh, S.J., Pan, M. and Chen, H.Y., J. Am. Chem. Soc., 2010, 132: 3644

    8. [8]

      Yin, J., Wu, T., Song, J.B., Zhang, Q., Liu, S.Y., Xu, R. and Duan, H.W., Chem. Mater., 2011, 23: 4756

    9. [9]

      Sun, X.C., Stagon, S., Huang, H.C., Chen, J. and Lei, Y., RSC Adv., 2014, 4: 23382

    10. [10]

      Chen, L.M., Jiang, D., Liu, X.H. and Qiu, G.Z., ChemPhysChem, 2014, 15: 1624

    11. [11]

      Zhang, C.X., Liu, L., Yin, H.J., Fang, H., Zhao, Y.M., Bi, C.J. and Xu, H.J., Appl. Phys. Lett., 2014, 105: 011905

    12. [12]

      Dou, X., Chung, P.Y., Sha, H.Y., Lin, Y.C. and Jiang, P., Phys. Chem. Chem. Phys., 2013, 15: 12680

    13. [13]

      Caldwell, J.D., Glembocki, O., Bezares, F.J., Bassim, N.D., Rendell, R.W., Feygelson, M., Ukaegbu, M., Kasica, R., Shirey, L. and Hosten, C., ACS Nano, 2011, 5: 4046

    14. [14]

      Li, X.L., Zhang, Y.Z., Shen, Z.X. and Fan, H.J., Small, 2012, 8: 2548

    15. [15]

      Zhang, K., Ji, J., Li, Y.X. and Liu, B.H., Anal. Chem., 2014, 86: 6660

    16. [16]

      Martn, A., Pescaglini, A., Schopf, C., Scardaci, V., Coull, R., Byrne, L. and Iacopino, D., J. Phys. Chem. C.,2014, 118: 13260

    17. [17]

      Grande, M., Bianco, G.V., Vincenti, M.A., Stomeo, T., Ceglia, D.D., Vittorio, M.D., Petruzzelli, V., Scalora, M., Bruno, G. and D'Orazio, A., Appl. Phys. Lett., 2012, 101: 111606

    18. [18]

      Wang, J.J., Zhou, F., Duan, G.T., Li, Y., Liu, G.Q., Su, F.H. and Cai, W.P., RSC Adv., 2014, 4: 8758

    19. [19]

      Xia, L.P., Yang, Z., Yin, S.Y., Guo, W.R., Li, S.H., Xie, W.Y., Huang, D.P., Deng, Q.L., Shi, H.F., Cui, H.L. and Du, C.L., Opt. Express, 2013, 21: 11349

    20. [20]

      Jung, M., Kim, S.K., Lee, S., Kim, J.H. and Woo, D.H., J. Nanophotonics, 2013, 7: 073798

    21. [21]

      Mu, C., Zhang, J.P. and Xu, D.S., Nanotechnology, 2010, 21: 015604

    22. [22]

      Zu, X.H., Hu, X.B., Lyon, L.A. and Deng, Y.L., Chem. Commun., 2010, 46: 7927

    23. [23]

      Geng, Z., Guan, S., Jiang, H.M., Gao, L.C., Liu, Z.W. and Jiang, L., Chinese J. Polym. Sci., 2014, 32(1): 92

    24. [24]

      Gopinath, A., Boriskina, S.V., Reinhard, B.M. and Negro, L.D., Opt. Express, 2009, 17: 3741

    25. [25]

      Vantasin, S., Tanabe, I., Tanaka, Y., Itoh, T., Suzuki, T., Kutsuma, Y., Ashida, K., Kaneko, T. and Ozaki, Y., J. Phys. Chem. C, 2014, 118: 25809

    26. [26]

      Li, H.B., Gu, Y.J., Guo, H.Y., Wang, X.N., Liu, Y., Xu, W.Q. and Xu, S.P., J. Phys. Chem. C, 2012, 116: 23608

    27. [27]

      Wang, X.N., Wang, Y.Y., Cong, M., Li, H.B., Gu, Y.J., Lombardi, J.R., Xu, S.P. and Xu, W.Q., Small, 2013, 9(11): 1895

    28. [28]

      Fu, C.C., Grimes, A., Long, M., Ferri, C.G.L., Rich, B.D., Ghosh, S., Ghosh, S., Lee, L.P., Gopinathan, A. and Khine, M., Adv. Mater., 2009, 21: 4472

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  711
  • HTML全文浏览量:  32
文章相关
  • 发布日期:  2015-10-05
  • 收稿日期:  2015-04-05
  • 修回日期:  2015-05-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章