Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols

Shengxian Zhai Shuxian Qiu Shuangtao Yang Xingyuan Gao Xinyu Feng Chenzhe Yun Ning Han Yongsheng Niu Jing Wang Hongbin Zhai

Citation:  Shengxian Zhai, Shuxian Qiu, Shuangtao Yang, Xingyuan Gao, Xinyu Feng, Chenzhe Yun, Ning Han, Yongsheng Niu, Jing Wang, Hongbin Zhai. Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols[J]. Chinese Chemical Letters, 2023, 34(3): 107657. doi: 10.1016/j.cclet.2022.06.080 shu

Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols

English

  • Carbon-carbon (C−C) bonds are ubiquitous and usually inert in most organic building blocks, activation of which is of fundamental interest and industrial applications [1]. Transition-metals are often employed to activate C−C bond to form new C−C bond or C−X (X = heteroatom) bond through coupling reactions. Nevertheless, it is challenging to achieve such transformations because transition-metal catalyst interacts preferentially with C−H bond [2-5]. To address the issues, tremendous efforts have been devoted to developing viable substrates and competent catalytic systems [6-14]. As for the substrates, tertiary cyclopropanols, first synthesized by Cottle and coworks [15, 16], exhibit unique reactivity towards C−C bond cleavage driven by the inherent ring strain [17, 18], and are widely used as the C3 synthons. Over the past a few decades, various ring-opening transformations of cyclopropanols have been developed for the synthesis of β-functionalized ketones or cyclic compounds bearing a larger ring [19-25]. In general, these processes involve a metal homoenolate or a β-keto alkyl radical intermediate, which could be further engaged in reactions with various coupling partners [26-55]. Based on above reaction pathway, cyclopropanols could serve as good precursors to generate cyclic compounds like pyridines [56-59], cycloheptanones [60], γ-butyrolactones [61], and cyclopentanols [62] via a ring-opening/cyclization process. Besides cyclic compounds, a series of β-halo- [25-34], amino- [35-37], azide- [34], thio- [34, 38, 39], CF3- [40-42], alkyl- [43-49], aryl- [50-52], alkenyl- [53, 54], alkynyl-substituted [55] ketones have been obtained in the presence of different transition metals or one-electron oxidants (Scheme 1a). Despite the progress made to forge C−C, C−N, C−halide and C−S bonds, synthetic methods for the formation of C−O bond from cyclopropanols are relatively undeveloped [63-68].

    Scheme 1

    Scheme 1.  Overview of the relevant works.

    Ambient air is widely applied in the C-O bond construction in organic synthesis due to the abundant reserves, simple acquisition, and mild reaction conditions, ideally satisfying the requirements for green chemistry compared with metal oxidants or pure oxygen [69-71]. In addition, β-hydroxy ketones have been deemed as versatile building blocks for the synthesis of natural products and pharmaceuticals [72-76]. Therefore, it is of great significance to develop an efficient synthetic access to β-hydroxy ketones under an open-air atmosphere. In addition, cobalt has emerged as a cost-effective and environmentally friendly catalyst for organic transformations [77]. As our ongoing interest in developing novel synthetic methods involving cobalt catalysis [78-84], we herein present the first example of cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols using air as both the sole oxidant and the oxygen source, regioselectively affording a range of β-hydroxy ketones (Scheme 1b).

    Our studies commenced with the reaction of 1-(4-methoxyphenyl)cyclopropan-1-ol (1a) with Co(OAc)2·4H2O (20 mol%) in MeOH under an air atmosphere at room temperature for 20 h, which, to our delight, led to the desired β-hydroxyl ketone 2a in 45% yield (Table 1, entry 1). Other cobalt catalysts such as Co(acac)2, Co(acac)3, CoCl2, CoBr2, and CoF2 were found to be less effective for this reaction (entries 2-6). Co(OAc)2·4H2O was thus employed for further investigations. When Et3N (2.0 equiv.) was added as the base, the yield of 2a was improved to 56% (entry 7). Subseqently, solvent effect was examined, revealing that CH3CN was the best among the solvents screened (entries 8-15). Then, the loading of the Co(OAc)2·4H2O was screened. When the loading of the catalyst was decreased to 10 mol%, the yield of 2a declined to 70%; when the reaction was performed with 25 mol% of the catalyst loading, a comparable yield of the product was formed (entries 16 and 17). With CH3CN as the solvent, other metal catalysts such as AgNO3, Mn(OAc)2·4H2O, and Fe(acac)2 (entries 18-20) were examined, but all of them were obviously inferior to Co(OAc)2·4H2O. Furthermore, for this reaction, Et3N proved to be better than other bases, such as Na2CO3, NaHCO3, K2CO3, DBU, iPr2NEt, iPr2NH, and NaHSO3 (entries 21-27). Note that a comparable yield of 83% was obtained when the reaction was conducted under an atmosphere of O2 instead of air (entry 28). Finally, no hydroxylation product was detected in the absence of any metal salts, which indicated the necessity of an appropriate metal catalyst (entry 29).

    Table 1

    Table 1.  Screening of reaction conditions.a
    DownLoad: CSV

    With the optimized conditions secured (Table 1, entry 15), we examined the generality of this ring-opening/hydroxylation cascade reaction. The investigations started with tertiary cyclopropanols containing no substituents at C2 or C3 (Scheme 2). In general, a variety of 1-aryl-substituted cyclopropanols bearing an electron-neutral group (e.g., H), an electron-donating group (e.g., Me, OMe, Ph, tBu, OTs), or an electron-withdrawing group (e.g., F, Cl, Br, I, CF3, CO2Me) at the para position of the aromatic ring proceeded smoothly to afford the desired β-hydroxy ketones 2a-2l in 57%-89% yields. o-Substitution (2m), m-substitution (2n, 2o), and disubstitution (2p, 2q) on the aryl moiety were well tolerated, giving the corresponding products in good yields. Likewise, naphthyl-substituted cyclopropanols were also found to be suitable for the reaction and produced 2r and 2s in 62% and 72% yields, respectively. Cyclopropanols with a heteroaryl substituent (2t-2v) such as indolyl, furyl, and thienyl, were also competent substrates. Furthermore, 1-alkyl-substituted cyclopropanols reacted smoothly to furnish 2w-2z in 51%-71% yields.

    Scheme 2

    Scheme 2.  Scope of the 1-substituted tertiary cyclopropanols. Reaction conditions: 1 (0.4 mmol), Co(OAc)2·4H2O (20 mol%), Et3N (2.0 equiv.), CH3CN (4.0 mL), air, r.t., 20 h. a Na2CO3 (2.0 equiv.), dioxane (4.0 mL), air, r.t., 20 h.

    Next, we explored the reaction of tertiary cyclopropanols with substitution at both C1 and C2 (Scheme 3). 1-Phenyl-substituted cyclopropanols carrying either an alkyl (2aa, 2bb) or a chloroalkyl (2cc) group at the C2 showed good tolerance and delivered the corresponding products as a single regioisomer, implying that the reaction would involve exclusively disconnection of the more-substituted carbon-carbon bond. Also, the structure of 2cc was confirmed by an X-ray diffraction analysis (CCDC: 2142632). 1-Aryl-2-methyl-substituted substrates with a methyl, bromo, or fluoro group locating on the benzene ring could also be successfully transformed into the β-hydroxy ketones 2dd-2ff in 69%-82% yields in a highly regioselective manner.

    Scheme 3

    Scheme 3.  Scope of the disubstituted tertiary cyclopropanols. Reaction conditions: 1 (0.4 mmol), Co(OAc)2·4H2O (20 mol%), Et3N (2.0 equiv.), CH3CN (4.0 mL), air, r.t., 20 h.

    In addition, to demonstrate the utility of this cobalt-catalyzed ring-opening/hydroxylation cascade reaction in the synthesis, the following large-scale experiments were performed. When 1i (4 mmol) and 1ee (5 mmol) were selected as the substrates, satisfactory yields were achieved for the generation of β-hydroxyl ketones 2i (80%) and 2ee (74%), respectively (Scheme 4a). To display the applications of the β-hydroxyl ketone products accessible through the current synthetic method, two types of derivatizations were conducted (Scheme 4b). For example, the carbonyl group was smoothly reduced by NaBH4 to afford the corresponding diol 3i in 76% yield. Furthermore, 1, 2-addition of vinylmagnesium bromide to β-hydroxyl ketone 2i produced diol 4i in a moderate yield.

    Scheme4

    Scheme4.  Scalability experiments and representative derivatizations of 2i.

    To confirm whether the reaction proceeded via a radical pathway, the relevant radical quenching experiment was conducted (Scheme 5). Radical scavenger such as 2, 2, 6, 6-tetramethyl-1-piperidinyl-oxy (TEMPO, 3.0 equiv.) was added to the reaction system under the standard conditions, the cascade reaction was completely inhibited in this case.

    Scheme5

    Scheme5.  Radical quenching experiment.

    Based on our own findings as well as the literature reports [80, 85, 86], a plausible mechanism of the Co-catalyzed ring-opening/hydroxylation cascade reaction of cyclopropanols is proposed in Scheme 6. The reaction begins with oxidation of Co(Ⅱ) to Co(Ⅲ) by O2 present in air. Single electron transfer (SET) from cyclopropanol 1 to Co(Ⅲ) occurs to generate oxy radical intermediate A as well as a proton (H+). Subsequently, a radical β-scission takes place at the more-substituted carbon-carbon bond in order to form a more stablized β-keto alkyl radical intermediate B. Radical B is reacted with O2 to deliver peroxyradical C, which is converted into hydroperoxide D through an SET/protonation sequence. Co(Ⅱ)-mediated SET reduction of D furnishes anion intermediate E with simultaneous release of Co(Ⅲ) species, which enters into the next catalytic cycle. Finally, protonation of anion E gives β-hydroxy ketone 2.

    Scheme6

    Scheme6.  Proposed mechanism.

    In summary, utilizing air as both the sole oxidant and the oxygen source, we have realized an efficient cobalt-catalyzed radical ring-opening/hydroxylation cascade reaction of cyclopropanols to afford the β-hydroxy ketones with yields up to 89%. The transformation presumably involves a β-keto alkyl radical intermediate generated by the β-scission of cycloalkoxy radical. The advantages of the present new protocol include use of green oxidant (air) and earch-abundant cobalt salt, mild reaction conditions (room temperature), high regioselectivity, and broad substrate scope. Moreover, this method provides an efficient access to β-hydroxy ketones, which are not only useful chemicals but also valuable building blocks for further derivatizations. Further studies on air-assisted cobalt-catalyzed reactions and the ring-opening reaction of cyclopropanols are currently ongoing in our laboratory.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We thank the State Key Basic Research Program of the People's Republic of China (No. 2018YFC0310900), National Natural Science Foundation of China (Nos. 21871018, 21732001), Shenzhen Science and Technology Innovation Committee (Nos. KQTD20190929174023858, JCYJ20180504165454447), Industry and Information Technology Bureau of Shenzhen Municipality (No. 201806151622209330), Guangdong Science and Technology Program (No. 2017B030314002), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (No. 2019SHIBS0004), and the National Ten Thousand Talent Program (the Leading Talent Tier) for the financial support. In addition, Shengxian Zhai thanks the Science and Technology Project of Henan Province (No. 202102310328), the PhD Start-up Program of Anyang Institute of Technology (No. BSJ 2021042), Guangzhou Basic and Applied Basic Research Project in China (Nos. 202102020134, 202102020690), Youth Innovation Talents Project of Guangdong Universities (natural science) in China (No. 2019KQNCX098), the Henan Postdoctoral Foundation and the Postdoctoral Innovation Base of Anyang Institute of Technology for financial support.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.06.080.


    1. [1]

      Y.J. Park, J.W. Park, C.H. Jun, Acc. Chem. Res. 41 (2008) 222-234. doi: 10.1021/ar700133y

    2. [2]

      L. Kang, Y. Lin, Z. Gao, et al., CCS Chem. 2 (2020) 1678-1689.

    3. [3]

      P. Shao, T. Yu, H. Lu, P.F. Xu, H. Wei, CCS Chem. 2 (2020) 1862-1871.

    4. [4]

      M. Gozin, A. Weisman, Y. Ben-David, D. Milstein, Nature 364 (1993) 699-701. doi: 10.1038/364699a0

    5. [5]

      Y. Wang, J. He, Y. Zhang, CCS Chem. 2 (2020) 107-117. doi: 10.31635/ccschem.020.201900076

    6. [6]

      F. Chen, T. Wang, N. Jiao, Chem. Rev. 114 (2014) 8613-8661. doi: 10.1021/cr400628s

    7. [7]

      L. Souillart, N. Cramer, Chem. Rev. 115 (2015) 9410-9464. doi: 10.1021/acs.chemrev.5b00138

    8. [8]

      D.S. Kim, W.J. Park, C.H. Jun, Chem. Rev. 117 (2017) 8977–9015. doi: 10.1021/acs.chemrev.6b00554

    9. [9]

      S.P. Morcillo, Angew. Chem., Int. Ed. 58 (2019) 14044-14054. doi: 10.1002/anie.201905218

    10. [10]

      L. Deng, G. Dong, Trends Chem. 2 (2020) 183-198. doi: 10.1016/j.trechm.2019.12.002

    11. [11]

      S. Tong, K. Li, X. Ouyang, R. Song, J. Li, Green Synth. Catal. 2 (2021) 145-155. doi: 10.1016/j.gresc.2021.04.003

    12. [12]

      W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083-3094. doi: 10.1016/j.cclet.2020.07.035

    13. [13]

      H. Chen, D. Hong, K. Wan, et al., Chin. Chem. Lett. 33 (2022) 4357–4362. doi: 10.1016/j.cclet.2021.11.084

    14. [14]

      J. Chen, D. Bai, X. Guo, Y. Wang, X. Li, Chin. Chem. Lett. 33 (2022) 5056–5060. doi: 10.1016/j.cclet.2022.02.079

    15. [15]

      J.K. Magrane, D.L. Cottle, J. Am. Chem. Soc. 64 (1942) 484-487. doi: 10.1021/ja01255a004

    16. [16]

      G.W. Stahl, D.L. Cottle, J. Am. Chem. Soc. 65 (1943) 1782-1783. doi: 10.1021/ja01249a507

    17. [17]

      G. Fumagalli, S. Stanton, J.F. Bower, Chem. Rev. 117 (2017) 9404-9432. doi: 10.1021/acs.chemrev.6b00599

    18. [18]

      L. Souillart, E. Parker, N. Cramer, Top. Curr. Chem. 346 (2014) 163-194.

    19. [19]

      C.H. DePuy, Acc. Chem. Res. 1 (1968) 33-41. doi: 10.1021/ar50002a001

    20. [20]

      D.H. Gibson, C.H. DePuy, Chem. Rev. 74 (1974) 605-623. doi: 10.1021/cr60292a001

    21. [21]

      O.G. Kulinkovich, Chem. Rev. 103 (2003) 2597-2632. doi: 10.1021/cr010012i

    22. [22]

      A. Nikolaev, A. Orellana, Synthesis 48 (2016) 1741-1768. doi: 10.1055/s-0035-1560442

    23. [23]

      Y. Liu, Q.L. Wang, Z. Chen, et al., Beilstein J. Org. Chem. 15 (2019) 256–278. doi: 10.3762/bjoc.15.23

    24. [24]

      T.R. McDonald, L.R. Mills, M.S. West, S.A.L. Rousseaux, Chem. Rev. 121 (2020) 3-79.

    25. [25]

      H.M. Chen, G. Liao, C.K. Xu, Q.J. Yao, S. Zhang, B.F. Shi, CCS Chem. 3 (2021) 455–465. doi: 10.31635/ccschem.021.202000695

    26. [26]

      H.J. Zhao, X.F. Fan, J.J. Yu, C. Zhu, J. Am. Chem. Soc. 137 (2015) 3490-3493. doi: 10.1021/jacs.5b00939

    27. [27]

      N. Ishida, S. Okumura, Y. Nakanishi, M. Murakami, Chem. Lett. 44 (2015) 821-823. doi: 10.1246/cl.150138

    28. [28]

      S. Ren, C. Feng, T.P. Loh, 2022Org. Biomol. Chem. 135105-5109.

    29. [29]

      S. Bloom, D.D. Bume, C.R. Pitts, T. Lectka, Chem. Eur. J. 21 (2015) 8060-8063. doi: 10.1002/chem.201501081

    30. [30]

      Y.L. Deng, N.I. Kauser, S.M. Islam, J.T. Mohr, Eur. J. Org. Chem. 39 (2017) 5872-5879. doi: 10.1002/ejoc.201700899

    31. [31]

      Y.C. Lu, J.G. West, ACS Catal. 11 (2021) 12721-12728. doi: 10.1021/acscatal.1c03052

    32. [32]

      X.F. Fan, H.J. Zhao, J.J. Yu, X. Bao, C. Zhu, Org. Chem. Front. 3 (2016) 227-232. doi: 10.1039/C5QO00368G

    33. [33]

      F.Q. Huang, J. Xie, J. -G. Sun, et al., Org. Lett. 18 (2016) 684-687. doi: 10.1021/acs.orglett.5b03649

    34. [34]

      J. Jiao, L.X. Nguyen, D.R. Patterson, R.A. Flowers, Org. Lett. 9 (2007) 1323-1326. doi: 10.1021/ol070159h

    35. [35]

      M.H. Shen, X.L. Lu, H.D. Xu, RSC Adv. 5 (2015) 98757-98761. doi: 10.1039/C5RA20729K

    36. [36]

      Z. Ye, M. Dai, Org. Lett. 17 (2015) 2190-2193. doi: 10.1021/acs.orglett.5b00828

    37. [37]

      Z. Liang, Q. Chong, F. Meng, Sci. China Chem. 64 (2021) 1750-1755. doi: 10.1007/s11426-021-1062-y

    38. [38]

      Y.A. Konik, G.Z. Elek, S. Kaabel, et al., Org. Biomol. Chem. 15 (2017) 8334-8340. doi: 10.1039/C7OB01605K

    39. [39]

      B. Xu, D. Wang, Y. Hu, Q. Shen, Org. Chem. Front. 5 (2018) 1462-1465. doi: 10.1039/C8QO00115D

    40. [40]

      D.G. Kananovich, Y.A. Konik, D.M. Zubrytski, I. Järving, M. Lopp, Chem. Commun. 51 (2015) 8349-8352. doi: 10.1039/C5CC02386F

    41. [41]

      Y. Li, Z. Ye, T.M. Bellman, T. Chi, M. Dai, Org. Lett. 17 (2015) 2186-2189. doi: 10.1021/acs.orglett.5b00782

    42. [42]

      C. Jiang, L. Wang, H. Zhang, et al., Chem 6 (2020) 2407-2419. doi: 10.1016/j.chempr.2020.07.003

    43. [43]

      P.P. Das, K. Belmore, J.K. Cha, Angew. Chem., Int. Ed. 51 (2012) 9517-9520. doi: 10.1002/anie.201205190

    44. [44]

      N. Nithiy, A. Orellana, Org. Lett. 16 (2014) 5854-5857. doi: 10.1021/ol5027188

    45. [45]

      Z. Ye, K.E. Gettys, X. Shen, M. Dai, Org. Lett. 17 (2015) 6074-6077. doi: 10.1021/acs.orglett.5b03096

    46. [46]

      H. Zhang, G. Wu, H. Yi, et al., Angew. Chem. Int. Ed. 56 (2017) 3945-3950. doi: 10.1002/anie.201612138

    47. [47]

      J. Yang, Y. Sekiguchi, N. Yoshikai, ACS Catal. 9 (2019) 5638-5644. doi: 10.1021/acscatal.9b00655

    48. [48]

      W. Huang, F. Meng, Angew. Chem. Int. Ed. 60 (2021) 2694-2698. doi: 10.1002/anie.202012122

    49. [49]

      W. Zhou, T. Zhou, M. Tian, et al., J. Am. Chem. Soc. 143 (2021) 19975-19982. doi: 10.1021/jacs.1c10279

    50. [50]

      X. Zhou, S. Yu, L. Kong, X. Li, ACS Catal. 6 (2016) 647-651. doi: 10.1021/acscatal.5b02414

    51. [51]

      M. Lee, J. Heo, D. Kim, S. Chang, J. Am. Chem. Soc. 144 (2022) 3667-3675. doi: 10.1021/jacs.1c12934

    52. [52]

      S.C. Lu, H.S. Li, S. Xu, G.Y. Duan, Org. Biomol. Chem. 15 (2017) 324-327. doi: 10.1039/C6OB02330D

    53. [53]

      A. Ilangovan, S. Saravanakumar, S. Malayappasamy, Org. Lett. 15 (2013) 4968-4971. doi: 10.1021/ol402229m

    54. [54]

      J. Yang, Y. Shen, Y.J. Lim, N. Yoshikai, Chem. Sci. 9 (2018) 6928-6934. doi: 10.1039/c8sc02074d

    55. [55]

      K. Jia, F. Zhang, H. Huang, Y. Chen, J. Am. Chem. Soc. 138 (2016) 1514-1517. doi: 10.1021/jacs.5b13066

    56. [56]

      Y. -F. Wang, S. Chiba, J. Am. Chem. Soc. 131 (2009) 12570-12572. doi: 10.1021/ja905110c

    57. [57]

      Y. -F. Wang, K.K. Toh, E.P.J. Ng, S. Chiba, J. Am. Chem. Soc. 133 (2011) 6411-6421. doi: 10.1021/ja200879w

    58. [58]

      X. Zhou, Z. Qi, S. Yu, et al., Adv. Syn. Catal. 359 (2017) 1620-1625. doi: 10.1002/adsc.201601278

    59. [59]

      J.L. Zhan, M.W. Wu, D. Wei, et al., ACS Catal. 9 (2019) 4179-4188. doi: 10.1021/acscatal.9b00832

    60. [60]

      S. Ydhyam, J.K. Cha, Org. Lett. 17 (2015) 5820-5823. doi: 10.1021/acs.orglett.5b02978

    61. [61]

      Z. Ye, X. Cai, J. Li, M. Dai, ACS Catal. 8 (2018) 5907-5914. doi: 10.1021/acscatal.8b00711

    62. [62]

      J. Yang, Q. Sun, N. Yoshikai, ACS Catal. 9 (2019) 1973-1978. doi: 10.1021/acscatal.8b05114

    63. [63]

      D.H. Gibson, C.H. DePuy, Tetrahedron Lett. 10 (1969) 2203-2206 doi: 10.1016/S0040-4039(01)88122-3

    64. [64]

      M. Kirihara, S. Takizawa, T. Momose, Chem. Commun. 16 (1998) 1691-1692.

    65. [65]

      A.M. Martinez, G.E. Cushmac, J. Rocek, J. Am. Chem. Soc. 97 (2002) 6502-6510.

    66. [66]

      O. Kulinkovich, D. Astashko, V. Tyvorskii, N. Ilyina, Synthesis, 10 (2001) 1453-1455.

    67. [67]

      M. Kirihara, H. Kakuda, M. Ichinose, et al., Tetrahedron 61 (2005) 4831-4839. doi: 10.1016/j.tet.2005.03.033

    68. [68]

      W.B. Han, S.G. Li, X.W. Lu, Y. Wu, Eur. J. Org. Chem. 2014 (2014) 3841-3846. doi: 10.1002/ejoc.201402175

    69. [69]

      G.Z. Elek, V. Borovkov, M. Lopp, D.G. Kananovich, Org. Lett. 19 (2017) 3544-3547. doi: 10.1021/acs.orglett.7b01519

    70. [70]

      R.A. Sheldon, Chem. Soc. Rev. 41 (2012) 1437-1451. doi: 10.1039/C1CS15219J

    71. [71]

      B. Liu, F. Jin, T. Wang, X. Yuan, W. Han, Angew. Chem. Int. Ed. 56 (2017) 12712-12717. doi: 10.1002/anie.201707006

    72. [72]

      G.J. McGarvey, J.A. Mathys, K.J. Wilson, J. Org. Chem. 61 (1996) 5704-5705. doi: 10.1021/jo9609337

    73. [73]

      S.C. Sinha, C.F. Barbas, R.A. Lerner, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 14603-14608. doi: 10.1073/pnas.95.25.14603

    74. [74]

      I. Paterson, G.J. Florence, K. Gerlach, J.P. Scott, N. Sereinig, J. Am. Chem. Soc. 123 (2001) 9535-9544. doi: 10.1021/ja011211m

    75. [75]

      S. Colle, C. Taillefumier, Y. Chapleur, R. Liebl, A. Schmidt, Bioorg. Med. Chem. 7 (1999) 1049-1057. doi: 10.1016/S0968-0896(99)00020-6

    76. [76]

      D. Muri, N. Lohse-Fraefel, E.M. Carreira, Angew. Chem. Int. Ed. 44 (2005) 4036-4038. doi: 10.1002/anie.200500172

    77. [77]

      A. Baccalini, S. Vergura, P. Dolui, G. Zanoni, D. Maiti, Org. Biomol. Chem. 17 (2019) 10119-10141. doi: 10.1039/c9ob01994d

    78. [78]

      S. Zhai, S. Qiu, X. Chen, et al., Chem. Commun. 54 (2018) 98-101. doi: 10.1039/C7CC08533H

    79. [79]

      H. Zhao, X. Shao, T. Wang, et al., Chem. Commun. 54 (2018) 4927-4930. doi: 10.1039/C8CC01774C

    80. [80]

      S. Zhai, S. Qiu, X. Chen, et al., ACS Catal. 8 (2018) 6645-6649. doi: 10.1021/acscatal.8b01720

    81. [81]

      S. Qiu, S. Zhai, H. Wang, et al., Adv. Synth. Catal. 360 (2018) 3271–3276. doi: 10.1002/adsc.201800388

    82. [82]

      H. Zhao, X. Shao, Z. Qing, et al., Adv. Synth. Catal. 361 (2019) 1678–1682. doi: 10.1002/adsc.201801459

    83. [83]

      S. Qiu, S. Zhai, H. Wang, X. Chen, H. Zhai, Chem. Commun. 55 (2019) 4206-4209. doi: 10.1039/c9cc00948e

    84. [84]

      H. Zhao, T. Wang, Z. Qing, H. Zhai, Chem. Commun. 56 (2020) 5524-5527. doi: 10.1039/d0cc01582b

    85. [85]

      C. Zhang, P. Feng, N. Jiao, J. Am. Chem. Soc. 135 (2013) 15257-15262. doi: 10.1021/ja4085463

    86. [86]

      C. Tang, X. Qiu, Z. Cheng, N. Jiao, Chem. Soc. Rev. 50 (2021) 8067-8101. doi: 10.1039/d1cs00242b

  • Scheme 1  Overview of the relevant works.

    Scheme 2  Scope of the 1-substituted tertiary cyclopropanols. Reaction conditions: 1 (0.4 mmol), Co(OAc)2·4H2O (20 mol%), Et3N (2.0 equiv.), CH3CN (4.0 mL), air, r.t., 20 h. a Na2CO3 (2.0 equiv.), dioxane (4.0 mL), air, r.t., 20 h.

    Scheme 3  Scope of the disubstituted tertiary cyclopropanols. Reaction conditions: 1 (0.4 mmol), Co(OAc)2·4H2O (20 mol%), Et3N (2.0 equiv.), CH3CN (4.0 mL), air, r.t., 20 h.

    Scheme4  Scalability experiments and representative derivatizations of 2i.

    Scheme5  Radical quenching experiment.

    Scheme6  Proposed mechanism.

    Table 1.  Screening of reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  238
  • HTML全文浏览量:  29
文章相关
  • 发布日期:  2023-03-15
  • 收稿日期:  2022-05-04
  • 接受日期:  2022-06-30
  • 修回日期:  2022-06-26
  • 网络出版日期:  2022-07-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章