新型超级电容器的研发进展

梁晰童 潘伟 陈昆峰 薛冬峰

引用本文: 梁晰童, 潘伟, 陈昆峰, 薛冬峰. 新型超级电容器的研发进展[J]. 应用化学, 2016, 33(8): 867-875. doi: 10.11944/j.issn.1000-0518.2016.08.160174 shu
Citation:  LIANG Xitong, PAN Wei, CHEN Kunfeng, XUE Dongfeng. Advance in Research and Development of Novel Supercapacitors[J]. Chinese Journal of Applied Chemistry, 2016, 33(8): 867-875. doi: 10.11944/j.issn.1000-0518.2016.08.160174 shu

新型超级电容器的研发进展

    通讯作者: 薛冬峰,研究员; Tel/Fax:0431-85262207; E-mail:dongfeng@ciac.ac.cn; 研究方向:稀土物理化学、功能无机材料结晶过程、电化学储能
  • 基金项目:

    国家自然科学基金资助项目(51125009,91434118) 

    国家自然科学基金创新研究群体项目(21521092) 

    中国科学院国际合作局对外合作重点项目(121522KYS820150009) 

    吉林省科技发展计划项目(20160520002JH) 

摘要: 传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。初步介绍了新型锂离子电容器。锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。

English

  • 
    1. [1] Simon P,Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater,2008,7(11):845-854.[1] Simon P,Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater,2008,7(11):845-854.

    2. [2] Pandolfo A G,Hollenkamp A F. Carbon Properties and Their Role in Supercapacitors[J]. J Power Sources,2006,157(1):11-27.[2] Pandolfo A G,Hollenkamp A F. Carbon Properties and Their Role in Supercapacitors[J]. J Power Sources,2006,157(1):11-27.

    3. [3] Gonz lez A,Goikolea E,Barrena J A,et al. Review on Supercapacitors:Technologies and Materials[J]. Renew Sust Energ Rev,2016,58(2016):1189-1206.[3] Gonz lez A,Goikolea E,Barrena J A,et al. Review on Supercapacitors:Technologies and Materials[J]. Renew Sust Energ Rev,2016,58(2016):1189-1206.

    4. [4] Miller J R,Simon P. Electrochemical Capacitors for Energy Management[J]. Science,2008,321(5889):651-652.[4] Miller J R,Simon P. Electrochemical Capacitors for Energy Management[J]. Science,2008,321(5889):651-652.

    5. [5] LI Hong,LYU Yingchun. A Review on Electrochemical Energy Storage[J]. J Electrochem,2015,21(5):412-424(in Chinese).李泓,吕迎春. 电化学储能基本问题综述[J]. 电化学,2015,21(5):412-424.[5] LI Hong,LYU Yingchun. A Review on Electrochemical Energy Storage[J]. J Electrochem,2015,21(5):412-424(in Chinese).李泓,吕迎春. 电化学储能基本问题综述[J]. 电化学,2015,21(5):412-424.

    6. [6] Chang S K,Zainal Z,Tan K B,et al. Recent Development in Spinel Cobaltites for Supercapacitor Application[J]. Ceram Int,2015,41(1):1-14.[6] Chang S K,Zainal Z,Tan K B,et al. Recent Development in Spinel Cobaltites for Supercapacitor Application[J]. Ceram Int,2015,41(1):1-14.

    7. [7] Becker H. E. Low Voltage Electrolytic Capacitor:US42304254A[P],1957-07-23.[7] Becker H. E. Low Voltage Electrolytic Capacitor:US42304254A[P],1957-07-23.

    8. [8] Boos D I. Electrolytic Capacitor Having Carbon Paste Electrodes:US3536963DA[P],1970-10-27.[8] Boos D I. Electrolytic Capacitor Having Carbon Paste Electrodes:US3536963DA[P],1970-10-27.

    9. [9] Conway B E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M]. New York:Kluwer Academic/Plenum Publishers,1999:264-265.[9] Conway B E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M]. New York:Kluwer Academic/Plenum Publishers,1999:264-265.

    10. [10] LIU Haijing,XIA Yongyao. Research Progress of Hybrid Supercapacitor[J]. Prog Chem,2011,23(2/3):595-604(in Chinese).刘海晶,夏永姚. 混合型超级电容器的研究进展[J]. 化学进展,2011,23(2/3):595-604.[10] LIU Haijing,XIA Yongyao. Research Progress of Hybrid Supercapacitor[J]. Prog Chem,2011,23(2/3):595-604(in Chinese).刘海晶,夏永姚. 混合型超级电容器的研究进展[J]. 化学进展,2011,23(2/3):595-604.

    11. [11] Kötz R,Carlen M. Principles and Applications of Electrochemical Capacitors[J]. Electrochim Acta,2000,45(15/16):2483-2498.[11] Kötz R,Carlen M. Principles and Applications of Electrochemical Capacitors[J]. Electrochim Acta,2000,45(15/16):2483-2498.

    12. [12] Supercapacitors Can Destroy the Lithium-ion Battery Market[Z/OL].[2014-06-24].http://www.idtechex.com/research/articles/supercapacitors-can-destroy-the-lithium-ion-battery-market-00006649.asp.[12] Supercapacitors Can Destroy the Lithium-ion Battery Market[Z/OL].[2014-06-24].http://www.idtechex.com/research/articles/supercapacitors-can-destroy-the-lithium-ion-battery-market-00006649.asp.

    13. [13] Wang G P,Zhang L,Zhang J J. A Review of Electrode Materials for Electrochemical Supercapacitors[J]. Chem Soc Rev,2012,41(2):797-828.[13] Wang G P,Zhang L,Zhang J J. A Review of Electrode Materials for Electrochemical Supercapacitors[J]. Chem Soc Rev,2012,41(2):797-828.

    14. [14] XUE Dongfeng,LYU Pai,LI Keyan. Structure Design of Supercapacitor Electrode Materials[J]. J Henan Univ,2012,42(5):512-5239(in Chinese).薛冬峰,吕派,李克艳. 超级电容器电极材料的结构设计[J]. 河南大学学报,2012,42(5):512-523.[14] XUE Dongfeng,LYU Pai,LI Keyan. Structure Design of Supercapacitor Electrode Materials[J]. J Henan Univ,2012,42(5):512-5239(in Chinese).薛冬峰,吕派,李克艳. 超级电容器电极材料的结构设计[J]. 河南大学学报,2012,42(5):512-523.

    15. [15] CHEN Kunfeng,XUE Dongfeng. Colloidal Ionic Supercapacitors[J]. J Electrochem,2015,21(6):534-542(in Chinese).陈昆峰,薛冬峰. 胶体离子超级电容器[J]. 电化学,2015,21(6):534-542.[15] CHEN Kunfeng,XUE Dongfeng. Colloidal Ionic Supercapacitors[J]. J Electrochem,2015,21(6):534-542(in Chinese).陈昆峰,薛冬峰. 胶体离子超级电容器[J]. 电化学,2015,21(6):534-542.

    16. [16] CHEN Kunfeng,YANG Yangyang,CHEN Xu,et al. Study of Transition Metal-Based Materal for Eletrochemical Energy Storage[J]. J Henan Univ,2014,44(4):398-415(in Chinese).陈昆峰,杨阳阳,陈旭,等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报,2014,44(4):398-415.[16] CHEN Kunfeng,YANG Yangyang,CHEN Xu,et al. Study of Transition Metal-Based Materal for Eletrochemical Energy Storage[J]. J Henan Univ,2014,44(4):398-415(in Chinese).陈昆峰,杨阳阳,陈旭,等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报,2014,44(4):398-415.

    17. [17] Chen K F,Xue D F. Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Tech Sci,2015,58(11):1768-1778.[17] Chen K F,Xue D F. Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Tech Sci,2015,58(11):1768-1778.

    18. [18] Chen X,Chen K,Wang H,et al. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. Cryst Eng Comm,2014,16(29):6707-6715.[18] Chen X,Chen K,Wang H,et al. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. Cryst Eng Comm,2014,16(29):6707-6715.

    19. [19] Chen X,Chen K F,Wang H,et al. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta,2014,147:216-224.[19] Chen X,Chen K F,Wang H,et al. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta,2014,147:216-224.

    20. [20] Chen K,Yang Y Y,Li K Y,et al. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng,2014,2(3):440-444.[20] Chen K,Yang Y Y,Li K Y,et al. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng,2014,2(3):440-444.

    21. [21] Chen K F,Song S Y,Xue D F. An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv,2014,4(44):23338-23343.[21] Chen K F,Song S Y,Xue D F. An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv,2014,4(44):23338-23343.

    22. [22] Chen K F,Xue D F,Komarneni S. Colloidal Pseudocapacitor: Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources,2015,279:365-371.[22] Chen K F,Xue D F,Komarneni S. Colloidal Pseudocapacitor: Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources,2015,279:365-371.

    23. [23] Chen K F,Song S Y,Li K Y,et al. Water-Soluble Inorganic Salts with Ultrahigh Specific Capacitance: Crystallization Transformation Investigation of CuCl2 Electrodes[J]. Cryst Eng Comm,2013,15(47):10367-10373.[23] Chen K F,Song S Y,Li K Y,et al. Water-Soluble Inorganic Salts with Ultrahigh Specific Capacitance: Crystallization Transformation Investigation of CuCl2 Electrodes[J]. Cryst Eng Comm,2013,15(47):10367-10373.

    24. [24] Chen K F,Xue D F. Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. Cryst Eng Comm,2014,16(21):4610-4618.[24] Chen K F,Xue D F. Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. Cryst Eng Comm,2014,16(21):4610-4618.

    25. [25] Chen K F,Xue D F. Water-Soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 Can Be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci,2014,416:172-176. [26 Chen K F,Xue D F. YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci,2014,424(18):84-89.[25] Chen K F,Xue D F. Water-Soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 Can Be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci,2014,416:172-176. [26 Chen K F,Xue D F. YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci,2014,424(18):84-89.

    26. [27] Chen K F,Xue D F. Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci,2014,430:265-270.[27] Chen K F,Xue D F. Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci,2014,430:265-270.

    27. [28] CHEN Kunfeng,XUE Dongfeng. Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems[J]. Chinese J Appl Chem,2016,33(1):18-24(in Chinese).陈昆峰,薛冬峰. 胶体离子超级电容器的比容量评价[J]. 应用化学,2016,33(1):18-24.[28] CHEN Kunfeng,XUE Dongfeng. Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems[J]. Chinese J Appl Chem,2016,33(1):18-24(in Chinese).陈昆峰,薛冬峰. 胶体离子超级电容器的比容量评价[J]. 应用化学,2016,33(1):18-24.

    28. [29] Akinwolemiwa B,Peng C,Chen G Z. Redox Electrolytes in Supercapacitors[J]. J Electrochem Soc,2015,162(5):A5054-A5059.[29] Akinwolemiwa B,Peng C,Chen G Z. Redox Electrolytes in Supercapacitors[J]. J Electrochem Soc,2015,162(5):A5054-A5059.

    29. [30] Mai L Q,Minhas-Khan A,Tian X,et al. Synergistic Interaction Between Redox-Active Electrolyte and Binder-Free Functionalized Carbon for Ultrahigh Supercapacitor Performance[J]. Nat Commun,2013,4(1):2923-2929.[30] Mai L Q,Minhas-Khan A,Tian X,et al. Synergistic Interaction Between Redox-Active Electrolyte and Binder-Free Functionalized Carbon for Ultrahigh Supercapacitor Performance[J]. Nat Commun,2013,4(1):2923-2929.

    30. [31] Yu H Y,Wu J H,Fan L Q,et al. An Efficient Redox-Mediated Organic Electrolyte for High-Energy Supercapacitor[J]. J Power Sources,2014,248:1123-1126.[31] Yu H Y,Wu J H,Fan L Q,et al. An Efficient Redox-Mediated Organic Electrolyte for High-Energy Supercapacitor[J]. J Power Sources,2014,248:1123-1126.

    31. [32] Wu J H,Yu H J,Fan L Q,et al. A Simple and High-Effective Electrolyte Mediated with P-Phenylenediamine for Supercapacitor[J]. J Mater Chem,2012,22(36):19025-19030.[32] Wu J H,Yu H J,Fan L Q,et al. A Simple and High-Effective Electrolyte Mediated with P-Phenylenediamine for Supercapacitor[J]. J Mater Chem,2012,22(36):19025-19030.

    32. [33] Yu H J,Fan L Q,Wu J H,et al. Redox-Active Alkaline Electrolyte for Carbon-Based Supercapacitor with Pseudocapacitive Performance and Excellent Cyclability[J]. RSC Adv,2012,2(17):6736-6740.[33] Yu H J,Fan L Q,Wu J H,et al. Redox-Active Alkaline Electrolyte for Carbon-Based Supercapacitor with Pseudocapacitive Performance and Excellent Cyclability[J]. RSC Adv,2012,2(17):6736-6740.

    33. [34] Yu H J,Wu J H,Fan L Q,et al. Improvement of the Performance for Quasisolid-State Supercapacitor by Using PVA KOH KI Polymer Gel Electrolyte[J]. Electrochim Acta,2011,56(20):6881-6886.[34] Yu H J,Wu J H,Fan L Q,et al. Improvement of the Performance for Quasisolid-State Supercapacitor by Using PVA KOH KI Polymer Gel Electrolyte[J]. Electrochim Acta,2011,56(20):6881-6886.

    34. [35] Tian Y,Yan J,Xue R,et al. Capacitive Properties of Activated Carbon in K4Fe(CN)6[J]. J Electrochem Soc,2011,158(7):A818-A821.[35] Tian Y,Yan J,Xue R,et al. Capacitive Properties of Activated Carbon in K4Fe(CN)6[J]. J Electrochem Soc,2011,158(7):A818-A821.

    35. [36] Galiński M,Lewandowski A,Stpniak I. Ionic Liquids as Electrolytes[J]. Electrochim Acta,2006,51(26):5567-5580.[36] Galiński M,Lewandowski A,Stpniak I. Ionic Liquids as Electrolytes[J]. Electrochim Acta,2006,51(26):5567-5580.

    36. [37] Chen G Z. Perception of Supercapacitor and Supercapattery[C]//Electrochemical Capacitors:Fundamentals to Applications,220th ECS Meeting,Massachusetts,Boston:2011.[37] Chen G Z. Perception of Supercapacitor and Supercapattery[C]//Electrochemical Capacitors:Fundamentals to Applications,220th ECS Meeting,Massachusetts,Boston:2011.

    37. [38] Sivakkumar S,Pandolfo A G. Evaluation of Lithium-Ion Capacitors Assembled with Pre-Lithiated Graphite Anode and Activated Carbon Cathode[J]. Electrochim Acta,2012,65:280-287.[38] Sivakkumar S,Pandolfo A G. Evaluation of Lithium-Ion Capacitors Assembled with Pre-Lithiated Graphite Anode and Activated Carbon Cathode[J]. Electrochim Acta,2012,65:280-287.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  738
  • HTML全文浏览量:  280
文章相关
  • 收稿日期:  2016-04-25
  • 网络出版日期:  2016-06-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章