Fabrication of 6FDA-HFBAPP Polyimide Asymmetric Hollow Fiber Membranes and Their CO2/CH4 Separation Properties

Cong-Jun Gan Xiao-Chen Xu Xue-Wei Jiang Feng Gan Jie Dong Xin Zhao Qing-Hua Zhang

Citation:  Cong-Jun Gan, Xiao-Chen Xu, Xue-Wei Jiang, Feng Gan, Jie Dong, Xin Zhao, Qing-Hua Zhang. Fabrication of 6FDA-HFBAPP Polyimide Asymmetric Hollow Fiber Membranes and Their CO2/CH4 Separation Properties[J]. Chinese Journal of Polymer Science, 2019, 37(8): 815-826. doi: 10.1007/s10118-019-2255-7 shu

Fabrication of 6FDA-HFBAPP Polyimide Asymmetric Hollow Fiber Membranes and Their CO2/CH4 Separation Properties

English


    1. [1]

      Appels, L.; Lauwers, J.; Degreve, J.; Helsen, L.; Lievens, B.; Willems, K.; Vanimpe, J.; Rewil, R. Anaerobic digestion in global bio-energy production: potential and research challenges. Renew. Sust. Energ. Rev. 2011, 15, 4295-4301. doi: 10.1016/j.rser.2011.07.121

    2. [2]

      Favre, E.; Bounaceur, R.; Roizard, D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009, 328, 11-14. doi: 10.1016/j.memsci.2008.12.017

    3. [3]

      Favre, E. Membrane processes and postcombustion carbon dioxide capture: challenges and prospects. Chem. Eng. J. 2011, 171, 782-793 doi: 10.1016/j.cej.2011.01.010

    4. [4]

      Wenten, I. G. Recent development in membrane science and its industrial applications. Songklanakarin J. Sci. Technol. 2002, 24, 1010-1024.

    5. [5]

      Andriani, D.; Wresta, A.; Atmaja, T. D,; Saepudin, A. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl. Biochem. Biotech. 2014, 172, 1909-1928. doi: 10.1007/s12010-013-0652-x

    6. [6]

      Du, N.; Park, H. Advances in high permeability polymeric membrane materials for CO2 separations. Energ. Environ. Sci. 2012, 5, 7306-7322. doi: 10.1039/C1EE02668B

    7. [7]

      Jung, C. H.; Lee, J. E.; Han, S. H.; Park H. B.; Lee, Y. M. Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation. J. Membr. Sci. 2010, 350, 301-309. doi: 10.1016/j.memsci.2010.01.005

    8. [8]

      Budd, P. M.; Mckeown, N. B. Highly permeable polymers for gas separation membranes. Polym. Chem. 2010, 1, 63-68. doi: 10.1039/b9py00319c

    9. [9]

      Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165-185. doi: 10.1016/0376-7388(91)80060-J

    10. [10]

      Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390-400. doi: 10.1016/j.memsci.2008.04.030

    11. [11]

      Calle, M.; Garcia, C.; Lozano, A. E.; Delacampa, J. G.; Deabajo, J.; Alvarez, C. Local chain mobility dependence on molecular structure in polyimides with bulky side groups: Correlation with gas separation properties. J. Membr. Sci. 2013, 434, 121-129. doi: 10.1016/j.memsci.2013.01.054

    12. [12]

      Carta, M.; Croad, M. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Adv. Mater. 2014, 26, 3526-3531. doi: 10.1002/adma.v26.21

    13. [13]

      Ma, X.; Swaidan, R.; Belmabkhout, Y. Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity. Macromolecules 2012, 45, 3841-3849. doi: 10.1021/ma300549m

    14. [14]

      Kim, S.; Pechar, T. W.; Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 2006, 192, 330-339. doi: 10.1016/j.desal.2005.03.098

    15. [15]

      Chen, X. Y.; Rodrigue, D.; Kaliaguine, S. Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Sep. Purif. Technol. 2012, 86, 221-233. doi: 10.1016/j.seppur.2011.11.008

    16. [16]

      Qiu, W.; Xu, L.; Chen, C. C.; Paul, D. R.; Koros, W. J. Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymer 2013, 54, 6226-6235. doi: 10.1016/j.polymer.2013.09.007

    17. [17]

      Xu, L.; Zhang, C.; Rungta, M.; Koros, W. J. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations. J. Membr. Sci. 2014, 459, 223-232. doi: 10.1016/j.memsci.2014.02.023

    18. [18]

      Qiu, X. Z.; Wang, Y. M.; Wang, L. N.; Zhou, M. Q.; Yuan, Q. Preparation and properties of soluble polyimide membranes containing polyether segment for gas separation. Chem. J. Chinese U. 2009, 30, 196-202.

    19. [19]

      Wang, Z. G.; Liu, X.; Wang, D. Tröger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Tröger's base on separation performance. Polym. Chem. 2014, 5, 2793-2800. doi: 10.1039/c3py01608k

    20. [20]

      Smith, Z. P.; Freeman, B. D. Graphene Oxide: A new platform for high-performance gas- and liquid- separation membranes. Angew. Chem. Int. Edit. 2014, 53, 10286-10288. doi: 10.1002/anie.201404407

    21. [21]

      Ahmad, F.; Lau, K. K.; Shariff, A. M.; Yeong Y. F. Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system. J. Membr. Sci. 2013, 430, 44-55. doi: 10.1016/j.memsci.2012.11.070

    22. [22]

      Labreche, Y.; Lively, R. P.; Rezaei, F.; Chen, G.; Jones, C. W.; Koros, W. J. Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chem. Eng. J. 2013, 221, 166-175. doi: 10.1016/j.cej.2013.01.086

    23. [23]

      Ren, J.; Wang, R. The effects of chemical modifications on morphology and performance of 6FDA-ODA/NDA hollow fiber membranes for CO2/CH4 separation. J. Membr. Sci. 2003, 222, 133-147 doi: 10.1016/S0376-7388(03)00266-7

    24. [24]

      Ma, C.; Zhang, C.; Labreche, Y.; Fu, S. L.; Liu, L.; Koros, W. J. Thin-skinned intrinsically defect-free asymmetric mono-esterified hollow fiber precursors for crosslinkable polyimide gas separation membranes. J. Membr. Sci. 2015, 493, 252-262 doi: 10.1016/j.memsci.2015.06.018

    25. [25]

      Wienk, I.; Boom, R. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci. 1996, 113, 361-371. doi: 10.1016/0376-7388(95)00256-1

    26. [26]

      Reuvers, A.; Van, A. Formation of membranes by means of immersion precipitation: Part I. A model to describe mass transfer during immersion precipitation. J. Membr. Sci. 1987, 34, 45-65. doi: 10.1016/S0376-7388(00)80020-4

    27. [27]

      Widjojo, N.; Chung, T. S. Thickness and air gap dependence of macrovoid evolution in phase-inversion asymmetric hollow fiber membranes. Ind. Eng. Chem. Res. 2006, 45, 7618-7626. doi: 10.1021/ie0606587

    28. [28]

      Wang, D.; Li, K.; Teo, W. K. Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive. J. Membr. Sci. 2000, 176, 147-158. doi: 10.1016/S0376-7388(00)00419-1

    29. [29]

      Hibshman, C.; Cornelius, C. J.; Marand, E. The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J. Membrane Sci. 2003, 211, 25-40 doi: 10.1016/S0376-7388(02)00306-X

    30. [30]

      Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441-451. doi: 10.1021/j100785a001

    31. [31]

      Van, Krevelen, D. W.; Te Nijenhuis, K. Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, 2009

    32. [32]

      Jiang, X. W.; Xiao, X.; Dong, J.; Xu, X. C.; Zhao, X.; Zhang, Q. H. Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. J. Membr. Sci. 2018, 564, 605-616. doi: 10.1016/j.memsci.2018.07.068

    33. [33]

      Pinnau, I.; Koros, W. J. Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J. Appl. Polym. Sci. 1991, 43, 1491-1502. doi: 10.1002/app.1991.070430811

    34. [34]

      Ji, D. W.; Xiao, C. F.; An, S. L.; Zhao, J.; Hao, J. Q.; Chen, K. K. Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater. Chem. Eng. J. 2019, 363, 33-42 doi: 10.1016/j.cej.2019.01.111

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1561
  • HTML全文浏览量:  39
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-01-17
  • 接受日期:  2019-01-01
  • 修回日期:  2019-03-06
  • 网络出版日期:  2019-04-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章