CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology

Tiago P. Braga Regina C. R. Santos Barbara M. C. Sales Bruno R. da Silva Antônio N. Pinheiro Edson R. Leite Antoninho Valentini

引用本文: Tiago P. Braga, Regina C. R. Santos, Barbara M. C. Sales, Bruno R. da Silva, Antônio N. Pinheiro, Edson R. Leite, Antoninho Valentini. CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology[J]. 催化学报, 2014, 35(4): 514-523. doi: 10.1016/S1872-2067(14)60018-8 shu
Citation:  Tiago P. Braga, Regina C. R. Santos, Barbara M. C. Sales, Bruno R. da Silva, Antônio N. Pinheiro, Edson R. Leite, Antoninho Valentini. CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology[J]. Chinese Journal of Catalysis, 2014, 35(4): 514-523. doi: 10.1016/S1872-2067(14)60018-8 shu

CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology

    通讯作者: Antoninho Valentini
摘要: A factorial experimental design was combined with response surface methodology (RSM) to optimize the catalyzed CO2 consumption by coke deposition and syngas production during the dry reforming of CH4. The CH4/CO2 feed ratio and the reaction temperature were chosen as the variables, and the selected responses were CH4 and CO2 conversion, the H2/CO ratio, and coke deposition. The optimal reaction conditions were found to be a CH4/CO2 feed ratio of approximately 3 at 700 ℃, producing a large quantity of coke and realizing high CO2 conversion. Furthermore, Raman results showed that the CH4/CO2 ratio and reaction temperature affect the system's response, particularly the characteristics of the coke produced, which indicates the formation of carbon nanotubes and amorphous carbon.

English

    1. [1] Nigam P S, Singh A. Prog Energy Combust Sci, 2011, 37: 52[1] Nigam P S, Singh A. Prog Energy Combust Sci, 2011, 37: 52

    2. [2] Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Int J Greenh Gas Control, 2008, 2: 9[2] Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Int J Greenh Gas Control, 2008, 2: 9

    3. [3] Demirbas A. Appl Energy, 2009, 86: S108[3] Demirbas A. Appl Energy, 2009, 86: S108

    4. [4] Naik S N, Goud V V, Rout P K, Dalai A K. Renew Sustain Energy Rev, 2010, 14: 578[4] Naik S N, Goud V V, Rout P K, Dalai A K. Renew Sustain Energy Rev, 2010, 14: 578

    5. [5] Kang K M, Kim H W, Shim I W, Kwak H Y. Fuel Process Technol, 2011, 92: 1236[5] Kang K M, Kim H W, Shim I W, Kwak H Y. Fuel Process Technol, 2011, 92: 1236

    6. [6] Barroso-Quironga M M, Castro-Luna A E. Int J Hydrogen Energy, 2010, 35: 6052[6] Barroso-Quironga M M, Castro-Luna A E. Int J Hydrogen Energy, 2010, 35: 6052

    7. [7] Rivas M E, Fierro J L G, Goldwasser M R, Pietri E, Perez-Zurita M J, Griboval-Constant A, Leclercq G. Appl Catal A, 2008, 344: 10[7] Rivas M E, Fierro J L G, Goldwasser M R, Pietri E, Perez-Zurita M J, Griboval-Constant A, Leclercq G. Appl Catal A, 2008, 344: 10

    8. [8] Shi C, Zhang A J, Li X S, Zhang S H, Zhu A M, Ma Y F, Au C. Appl Catal A, 2012, 431-432: 164[8] Shi C, Zhang A J, Li X S, Zhang S H, Zhu A M, Ma Y F, Au C. Appl Catal A, 2012, 431-432: 164

    9. [9] Ibrahim A A, Fakeeha A H, Al-Fatesh A S. Int J Hydrogen Energy, 2014, 39: 1680[9] Ibrahim A A, Fakeeha A H, Al-Fatesh A S. Int J Hydrogen Energy, 2014, 39: 1680

    10. [10] Sokolov S, Kondratenko E V, Pohl M M, Rodemerck U. Int J Hydrogen Energy, 2013, 38: 16121[10] Sokolov S, Kondratenko E V, Pohl M M, Rodemerck U. Int J Hydrogen Energy, 2013, 38: 16121

    11. [11] Fukuhara C, Hyodo R, Yamamoto K, Masuda K, Watanabe R. Appl Catal A, 2013, 468: 18[11] Fukuhara C, Hyodo R, Yamamoto K, Masuda K, Watanabe R. Appl Catal A, 2013, 468: 18

    12. [12] da Silva B R, dos Santos R C R, Valentini A. Curr Top Catal, 2012, 10: 93[12] da Silva B R, dos Santos R C R, Valentini A. Curr Top Catal, 2012, 10: 93

    13. [13] Albarazi A, Beaunier P, Da Costa P. Int J Hydrogen Energy, 2013, 38: 127[13] Albarazi A, Beaunier P, Da Costa P. Int J Hydrogen Energy, 2013, 38: 127

    14. [14] Pour A N, Shahri S M K, Bozorgzadeh H R, Zamani Y, Tavasoli A, Marvast M A. Appl Catal A, 2008, 348: 201[14] Pour A N, Shahri S M K, Bozorgzadeh H R, Zamani Y, Tavasoli A, Marvast M A. Appl Catal A, 2008, 348: 201

    15. [15] Guo J Z, Hou Z Y, Gao J, Zheng X M. Fuel, 2008, 87: 1348[15] Guo J Z, Hou Z Y, Gao J, Zheng X M. Fuel, 2008, 87: 1348

    16. [16] Maluf S S, Assaf E M. Fuel, 2009, 88: 1547[16] Maluf S S, Assaf E M. Fuel, 2009, 88: 1547

    17. [17] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. J Catal, 2007, 250: 331[17] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. J Catal, 2007, 250: 331

    18. [18] Gao J, Hou Z Y, Guo J Z, Zhu Y H, Zheng X M. Catal Today, 2008, 131: 278[18] Gao J, Hou Z Y, Guo J Z, Zhu Y H, Zheng X M. Catal Today, 2008, 131: 278

    19. [19] Zhang J G, Wang H, Dalai A K. Appl Catal A, 2008, 339: 121[19] Zhang J G, Wang H, Dalai A K. Appl Catal A, 2008, 339: 121

    20. [20] Zhao C G, Ji L J, Liu H J, Hu G J, Zhang S M, Yang M S, Yang Z Z. J Solid State Chem, 2004, 177: 4394[20] Zhao C G, Ji L J, Liu H J, Hu G J, Zhang S M, Yang M S, Yang Z Z. J Solid State Chem, 2004, 177: 4394

    21. [21] Mittal H, Mishra S B, Mishra A K, Kaith B S, Jindal R. J Inorg Organomet Polym Mater, 2013, 23: 1128[21] Mittal H, Mishra S B, Mishra A K, Kaith B S, Jindal R. J Inorg Organomet Polym Mater, 2013, 23: 1128

    22. [22] Wu Y Y, Zhou S Q, Qin F H, Ye X Y, Zheng K. J Hazard Mater, 2010, 180: 456[22] Wu Y Y, Zhou S Q, Qin F H, Ye X Y, Zheng K. J Hazard Mater, 2010, 180: 456

    23. [23] Olmez-Hanci T, Arslan-Alaton I, Basar G. J Hazard Mater, 2011, 185: 193[23] Olmez-Hanci T, Arslan-Alaton I, Basar G. J Hazard Mater, 2011, 185: 193

    24. [24] Braga T P, Sales B M C, Pinheiro A N, Herrera W T, Baggio-Saitovitch E, Valentini A. Catal Sci Technol, 2011, 1: 1383[24] Braga T P, Sales B M C, Pinheiro A N, Herrera W T, Baggio-Saitovitch E, Valentini A. Catal Sci Technol, 2011, 1: 1383

    25. [25] Hormozi-Nezhad M R, Jalali-Heravi M, Robatjazi H, Ebrahimi-Najafabadi H. Colloids Surf A, 2012, 393: 46[25] Hormozi-Nezhad M R, Jalali-Heravi M, Robatjazi H, Ebrahimi-Najafabadi H. Colloids Surf A, 2012, 393: 46

    26. [26] de la Osa A R, de Lucas A, Sanchez-Silva L, Diaz-Maroto J, Valverde J L, Sanchez P. Fuel, 2012, 95: 587[26] de la Osa A R, de Lucas A, Sanchez-Silva L, Diaz-Maroto J, Valverde J L, Sanchez P. Fuel, 2012, 95: 587

    27. [27] Karimipour S, Gerspacher R, Gupta R, Spiteri R J. Fuel, 2013, 103: 308[27] Karimipour S, Gerspacher R, Gupta R, Spiteri R J. Fuel, 2013, 103: 308

    28. [28] Pompeo F, Nichio N N, Souza M M V M, Cesar D V, Ferretti O A, Schmal M. Appl Catal A, 2007, 316: 175[28] Pompeo F, Nichio N N, Souza M M V M, Cesar D V, Ferretti O A, Schmal M. Appl Catal A, 2007, 316: 175

    29. [29] Gonçalves N S, Carvalho J A, Lima Z M, Sasaki J M. Mater Lett, 2012, 72: 36[29] Gonçalves N S, Carvalho J A, Lima Z M, Sasaki J M. Mater Lett, 2012, 72: 36

    30. [30] Zhao J F, Zhao J J, Chen J H, Wang X H, Han Z D, Li Y H. Ceram Int, 2014, 40: 3379[30] Zhao J F, Zhao J J, Chen J H, Wang X H, Han Z D, Li Y H. Ceram Int, 2014, 40: 3379

    31. [31] Chen G, Chen J, Srinivasakannan C, Peng J H. Appl Surf Sci, 2012, 258: 3068[31] Chen G, Chen J, Srinivasakannan C, Peng J H. Appl Surf Sci, 2012, 258: 3068

    32. [32] Pavlova S, Kapokova L, Bunina R, Alikina G, Sazonova N, Krieger T, Ishchenko A, Rogov V, Gulyaev R, Sadykov V, Mirodatos C. Catal Sci Technol, 2012, 2: 2099[32] Pavlova S, Kapokova L, Bunina R, Alikina G, Sazonova N, Krieger T, Ishchenko A, Rogov V, Gulyaev R, Sadykov V, Mirodatos C. Catal Sci Technol, 2012, 2: 2099

    33. [33] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108-109: 177[33] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108-109: 177

    34. [34] Pocsik I, Hundhausen M, Koos M, Ley L. J Non-Cryst Solids, 1998, 227-230 (Pt. B): 1083[34] Pocsik I, Hundhausen M, Koos M, Ley L. J Non-Cryst Solids, 1998, 227-230 (Pt. B): 1083

    35. [35] Klar P, Lidorikis E, Eckmann A, Verzhbitskiy I A, Ferrari A C, Casiraghi C. Phys Rev B, 2013, 87: 205435[35] Klar P, Lidorikis E, Eckmann A, Verzhbitskiy I A, Ferrari A C, Casiraghi C. Phys Rev B, 2013, 87: 205435

    36. [36] Ferrari A C. Solid State Commun, 2007, 143: 47[36] Ferrari A C. Solid State Commun, 2007, 143: 47

  • 加载中
计量
  • PDF下载量:  451
  • 文章访问数:  658
  • HTML全文浏览量:  35
文章相关
  • 发布日期:  2014-04-20
  • 收稿日期:  2013-09-19
  • 网络出版日期:  2013-12-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章