Detection of long-chain branches in polyethylene via rheological measurements

Yun-Fan Mei Bao-Hua Guo Jun Xu

引用本文: Yun-Fan Mei,  Bao-Hua Guo,  Jun Xu. Detection of long-chain branches in polyethylene via rheological measurements[J]. Chinese Chemical Letters, 2016, 27(4): 588-592. shu
Citation:  Yun-Fan Mei,  Bao-Hua Guo,  Jun Xu. Detection of long-chain branches in polyethylene via rheological measurements[J]. Chinese Chemical Letters, 2016, 27(4): 588-592. shu

Detection of long-chain branches in polyethylene via rheological measurements

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 21374054) and the Sino-German Center for Research Promotion.

摘要: The detection of long-chain branches (LCB) in polyethylene is of considerable importance as the processing properties of polyethylene are strongly affected by even a small amount of LCB. While the conventional characterization techniques such as GPC-MALS and 13C NMR fail or take very long time to detect low content of LCB, we turn to the rheological method, which is more sensitive to LCB. In our study, we performed oscillatory shear test, creep test and stress relaxation test on two series of metallocene linear low density polyethylene (LLDPE), revealing that the resins with LCB show higher zero-shear-rate viscosity, retarded relaxation and higher flow activation energy than those without or with less LCB. The resins with LCB showed shear thinning at very low shear rate and their zero-shear-rate viscosities were obtained via creep test. The content of LCB was quantitatively estimated from the flow activation energy. In addition, the modulus-time curves during stress relaxation of melt of the different resins obeyed the power law. The exponent of the resins with more LCB was -0.7, different from that of the resins with less LCB, around -1.7.

English

    1. [1] A. Andresen, H.G. Cordes, J. Herwig, et al., Halogen-free soluble Ziegler catalysts for the polymerization of ethylene. Control of molecular weight by choice of temperature, Angew. Chem. Int. Ed. 15(1976) 630-632.

    2. [2] T. Sasaki, T. Ebara, H. Johoji, New materials from new catalysts, Polym. Adv. Technol. 4(1993) 406-414.

    3. [3] L.Y. Zhao, P. Choi, A review of the miscibility of polyethylene blends, Mater. Manuf. Processes 21(2006) 135-142.

    4. [4] J.Y. Dong, Y.L. Hu, Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry, Coord. Chem. Rev. 250(2006) 47-65.

    5. [5] Y. Minami, T. Takebe, M. Kanamaru, T. Okamoto, Development of low isotactic polyolefin, Polym. J. 47(2015) 227-234.

    6. [6] W. Spaleck, F. Küeber, A. Winter, et al., The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts, Organometallics 13(1994) 954-963.

    7. [7] H.H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R.M. Waymouth, Stereospecific olefin polymerization with chiral metallocene catalysts, Angew. Chem. Int. Ed. 34(1995) 1143-1170.

    8. [8] G.B. Galland, R. Quijada, R. Rojas, G. Bazan, Z.J.A. Komon, NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts, Macromolecules 35(2002) 339-345.

    9. [9] L.G. Furlan, F.A. Kunrath, R.S. Mauler, R.F. de Souza, O.L. Casagrande Jr., Linear low density polyethylene (LLDPE) from ethylene using TpMsNiCl (TpMs=hydridotris(3-mesitylprazol-1-yl)) and Cp2ZrCl2 as a tandem catalyst system, J. Mol. Catal. A:Chem. 214(2004) 207-211.

    10. [10] R.A. Bubeck, Structure-properties relationships in metallocene polyethylenes, Mater. Sci. Eng.:R:Rep. 39(2002) 1-28.

    11. [11] E. Kokko, Metallocene-Catalyzed ethylene Polymerization:Long-Chain Branched Polyethylene, Acta Polythechnica Scandinavian, Chemical Technology Series No. 290, Finnish Academies of Technology, 2002, p.52.

    12. [12] L. Izzo, L. Caporaso, G. Senatore, L. Oliva, Branched polyethylene by ethylene homopolymerization with meso-zirconocene catalyst, Macromolecules 32(1999) 6913-6916.

    13. [13] M.H. Prosenc, H.H. Brintzinger, Zirconium-alkyl isomerizations in zirconocenecatalyzed olefin polymerization:a density functional study, Organometallics 16(1997) 3889-3894.

    14. [14] P. Lehmus, E. Kokko, R. Leino, et al., Chain end isomerization as a side reaction in metallocene-catalyzed ethylene and propylene polymerizations, Macromolecules 33(2000) 8534-8540.

    15. [15] R. Pérez, E. Rojo, M. Fernández, et al., Basic and applied rheology of m-LLDPE/LDPE blends:miscibility and processing features, Polymer 46(2005) 8045-8053.

    16. [16] C.Y. Liu, J. Wang, J.S. He, Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE, Polymer 43(2002) 3811-3818.

    17. [17] J.F. Vega, A. Muñoz-Escalona, A. Santamaría, M.E. Muñoz, P. Lafuente, Comparison of the rheological properties of metallocene-catalyzed and conventional highdensity polyethylenes, Macromolecules 29(1996) 960-965.

    18. [18] B.H. Bersted, J.D. Slee, C.A. Richter, Prediction of rheological behavior of branched polyethylene from molecular structure, J. Appl. Polym. Sci. 26(1981) 1001-1014.

    19. [19] Y.L. Yu, P.J. DesLauries, D.C. Rohlfing, SEC-MALS method for the determination of long-chain branching and long-chain branching distribution in polyethylene, Polymer 46(2005) 5165-5182.

    20. [20] M.P. Tarazona, E. Saiz, Combination of SEC/MALS experimental procedures and theoretical analysis for studying the solution properties of macromolecules, J. Biochem. Biophys. Methods 56(2003) 95-116.

    21. [21] S.T. Balke, T.H. Mourey, C.P. Lusignan, Size exclusion chromatography of branched polyethylenes to predict rheological properties, Int. J. Polym. Anal. Charact. 11(2006) 21-34.

    22. [22] K. Klimke, M. Parkinson, C. Piel, et al., Optimisation and application of polyolefin branch quantification by melt-state 13C NMR spectroscopy, Macromol. Chem. Phys. 207(2006) 382-395.

    23. [23] P.M. Wood-Adams, J.M. Dealy, Effect of molecular structure on the linear viscoelastic behavior of polyethylene, Macromolecules 33(2000) 7489-7499.

    24. [24] R.N. Shroff, H. Mavridis, Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes, Macromolecules 34(2001) 7362-7367.

    25. [25] W.W. Graessley, S.F. Edwards, Entanglement interactions in polymers and the chain contour concentration, Polymer 22(1981) 1329-1334.

    26. [26] R.P. Lagendijk, A.H. Hogt, A. Buijtenhuijs, A.D. Gotsis, Peroxydicarbonate modification of polypropylene and extensional flow properties, Polymer 42(2001) 10035-10043.

    27. [27] J.H. Tian, W. Yu, C.X. Zhou, The preparation and rheology characterization of long chain branching polypropylene, Polymer 47(2006) 7962-7969.

    28. [28] C.J. Tsenoglou, A.D. Gotsis, Rheological characterization of long chain branching in a melt of evolving molecular architecture, Macromolecules 34(2001) 4685-4687.

    29. [29] D. Auhl, J. Stange, H. Münstedt, Long-chain branched polypropylenes by electron beam irradiation and their rheological properties, Macromolecules 37(2004) 9465-9472.

    30. [30] C.A. García-Franco, S. Srinivas, D.J. Lohse, P. Brant, Similarities between gelation and long chain branching viscoelastic behavior, Macromolecules 34(2001) 3115-3117.

    31. [31] C.G. Robertson, C.A. García-Franco, S. Srinivas, Extent of branching from linear viscoelasticity of long-chain-branched polymers, J. Polym. Sci. Part B:Polym, Phys. 42(2004) 1671-1684.

    32. [32] C.A. García-Franco, D.J. Lohse, C.G. Robertson, O. Georjon, Relative quantification of long chain branching in essentially linear polyethylenes, Eur. Polym. J. 44(2008) 376-391.

    33. [33] H.Y. Wang, X.T. Hu, Z.Y. Li, J.Y. Yi, J.Y. Dong, Preparation and characterization of high melt strength polypropylene, Prog. Chem. 19(2007) 932-958.

    34. [34] N. Sombatsompop, A.K. Wood, Comments on some assumptions made for the determination of polymer melt flow properties, J. Sci. Res. Chula. Univ. 23(1998) 101-107.

    35. [35] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, NY, 1980.

    36. [36] F.J. Stadler, C. Piel, J. Kaschta, et al., Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the massaverage molar mass and polydispersity, Rheol. Acta 45(2006) 755-764.

    37. [37] D.J. Lohse, S.T. Milner, L.J. Fetters, M. Xenidou, Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior, Macromolecules 35(2002) 3066-3075.

    38. [38] R.J. Koopmans, Extrudate swell of high density polyethylene. Part I:Aspects of molecular structure and rheological characterization methods, Polym. Eng. Sci. 32(1992) 1741-1749.

    39. [39] M.M. Cross, Rheology of non-Newtonian fluids:a new flow equation for pseudoplastic systems, J. Colloid Sci. 20(1965) 417-437.

    40. [40] S.H. Wasserman, W.W. Graessley, Prediction of linear viscoelastic response for entangled polyolefin melts from molecular weight distribution, Polym. Eng. Sci. 36(1996) 852-861.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1029
  • HTML全文浏览量:  24
文章相关
  • 发布日期:  2016-03-02
  • 收稿日期:  2015-12-28
  • 修回日期:  2016-02-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章