Citation: Yun-Fan Mei, Bao-Hua Guo, Jun Xu. Detection of long-chain branches in polyethylene via rheological measurements[J]. Chinese Chemical Letters, 2016, 27(4): 588-592.
Detection of long-chain branches in polyethylene via rheological measurements
English
Detection of long-chain branches in polyethylene via rheological measurements
-
Key words:
- Metallocene polyethylene
- / Long-chain branch
- / Rheology
- / Stress relaxation
-
-
[1] A. Andresen, H.G. Cordes, J. Herwig, et al., Halogen-free soluble Ziegler catalysts for the polymerization of ethylene. Control of molecular weight by choice of temperature, Angew. Chem. Int. Ed. 15(1976) 630-632.
-
[2] T. Sasaki, T. Ebara, H. Johoji, New materials from new catalysts, Polym. Adv. Technol. 4(1993) 406-414.
-
[3] L.Y. Zhao, P. Choi, A review of the miscibility of polyethylene blends, Mater. Manuf. Processes 21(2006) 135-142.
-
[4] J.Y. Dong, Y.L. Hu, Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry, Coord. Chem. Rev. 250(2006) 47-65.
-
[5] Y. Minami, T. Takebe, M. Kanamaru, T. Okamoto, Development of low isotactic polyolefin, Polym. J. 47(2015) 227-234.
-
[6] W. Spaleck, F. Küeber, A. Winter, et al., The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts, Organometallics 13(1994) 954-963.
-
[7] H.H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R.M. Waymouth, Stereospecific olefin polymerization with chiral metallocene catalysts, Angew. Chem. Int. Ed. 34(1995) 1143-1170.
-
[8] G.B. Galland, R. Quijada, R. Rojas, G. Bazan, Z.J.A. Komon, NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts, Macromolecules 35(2002) 339-345.
-
[9] L.G. Furlan, F.A. Kunrath, R.S. Mauler, R.F. de Souza, O.L. Casagrande Jr., Linear low density polyethylene (LLDPE) from ethylene using TpMsNiCl (TpMs=hydridotris(3-mesitylprazol-1-yl)) and Cp2ZrCl2 as a tandem catalyst system, J. Mol. Catal. A:Chem. 214(2004) 207-211.
-
[10] R.A. Bubeck, Structure-properties relationships in metallocene polyethylenes, Mater. Sci. Eng.:R:Rep. 39(2002) 1-28.
-
[11] E. Kokko, Metallocene-Catalyzed ethylene Polymerization:Long-Chain Branched Polyethylene, Acta Polythechnica Scandinavian, Chemical Technology Series No. 290, Finnish Academies of Technology, 2002, p.52.
-
[12] L. Izzo, L. Caporaso, G. Senatore, L. Oliva, Branched polyethylene by ethylene homopolymerization with meso-zirconocene catalyst, Macromolecules 32(1999) 6913-6916.
-
[13] M.H. Prosenc, H.H. Brintzinger, Zirconium-alkyl isomerizations in zirconocenecatalyzed olefin polymerization:a density functional study, Organometallics 16(1997) 3889-3894.
-
[14] P. Lehmus, E. Kokko, R. Leino, et al., Chain end isomerization as a side reaction in metallocene-catalyzed ethylene and propylene polymerizations, Macromolecules 33(2000) 8534-8540.
-
[15] R. Pérez, E. Rojo, M. Fernández, et al., Basic and applied rheology of m-LLDPE/LDPE blends:miscibility and processing features, Polymer 46(2005) 8045-8053.
-
[16] C.Y. Liu, J. Wang, J.S. He, Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE, Polymer 43(2002) 3811-3818.
-
[17] J.F. Vega, A. Muñoz-Escalona, A. Santamaría, M.E. Muñoz, P. Lafuente, Comparison of the rheological properties of metallocene-catalyzed and conventional highdensity polyethylenes, Macromolecules 29(1996) 960-965.
-
[18] B.H. Bersted, J.D. Slee, C.A. Richter, Prediction of rheological behavior of branched polyethylene from molecular structure, J. Appl. Polym. Sci. 26(1981) 1001-1014.
-
[19] Y.L. Yu, P.J. DesLauries, D.C. Rohlfing, SEC-MALS method for the determination of long-chain branching and long-chain branching distribution in polyethylene, Polymer 46(2005) 5165-5182.
-
[20] M.P. Tarazona, E. Saiz, Combination of SEC/MALS experimental procedures and theoretical analysis for studying the solution properties of macromolecules, J. Biochem. Biophys. Methods 56(2003) 95-116.
-
[21] S.T. Balke, T.H. Mourey, C.P. Lusignan, Size exclusion chromatography of branched polyethylenes to predict rheological properties, Int. J. Polym. Anal. Charact. 11(2006) 21-34.
-
[22] K. Klimke, M. Parkinson, C. Piel, et al., Optimisation and application of polyolefin branch quantification by melt-state 13C NMR spectroscopy, Macromol. Chem. Phys. 207(2006) 382-395.
-
[23] P.M. Wood-Adams, J.M. Dealy, Effect of molecular structure on the linear viscoelastic behavior of polyethylene, Macromolecules 33(2000) 7489-7499.
-
[24] R.N. Shroff, H. Mavridis, Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes, Macromolecules 34(2001) 7362-7367.
-
[25] W.W. Graessley, S.F. Edwards, Entanglement interactions in polymers and the chain contour concentration, Polymer 22(1981) 1329-1334.
-
[26] R.P. Lagendijk, A.H. Hogt, A. Buijtenhuijs, A.D. Gotsis, Peroxydicarbonate modification of polypropylene and extensional flow properties, Polymer 42(2001) 10035-10043.
-
[27] J.H. Tian, W. Yu, C.X. Zhou, The preparation and rheology characterization of long chain branching polypropylene, Polymer 47(2006) 7962-7969.
-
[28] C.J. Tsenoglou, A.D. Gotsis, Rheological characterization of long chain branching in a melt of evolving molecular architecture, Macromolecules 34(2001) 4685-4687.
-
[29] D. Auhl, J. Stange, H. Münstedt, Long-chain branched polypropylenes by electron beam irradiation and their rheological properties, Macromolecules 37(2004) 9465-9472.
-
[30] C.A. García-Franco, S. Srinivas, D.J. Lohse, P. Brant, Similarities between gelation and long chain branching viscoelastic behavior, Macromolecules 34(2001) 3115-3117.
-
[31] C.G. Robertson, C.A. García-Franco, S. Srinivas, Extent of branching from linear viscoelasticity of long-chain-branched polymers, J. Polym. Sci. Part B:Polym, Phys. 42(2004) 1671-1684.
-
[32] C.A. García-Franco, D.J. Lohse, C.G. Robertson, O. Georjon, Relative quantification of long chain branching in essentially linear polyethylenes, Eur. Polym. J. 44(2008) 376-391.
-
[33] H.Y. Wang, X.T. Hu, Z.Y. Li, J.Y. Yi, J.Y. Dong, Preparation and characterization of high melt strength polypropylene, Prog. Chem. 19(2007) 932-958.
-
[34] N. Sombatsompop, A.K. Wood, Comments on some assumptions made for the determination of polymer melt flow properties, J. Sci. Res. Chula. Univ. 23(1998) 101-107.
-
[35] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, NY, 1980.
-
[36] F.J. Stadler, C. Piel, J. Kaschta, et al., Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the massaverage molar mass and polydispersity, Rheol. Acta 45(2006) 755-764.
-
[37] D.J. Lohse, S.T. Milner, L.J. Fetters, M. Xenidou, Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior, Macromolecules 35(2002) 3066-3075.
-
[38] R.J. Koopmans, Extrudate swell of high density polyethylene. Part I:Aspects of molecular structure and rheological characterization methods, Polym. Eng. Sci. 32(1992) 1741-1749.
-
[39] M.M. Cross, Rheology of non-Newtonian fluids:a new flow equation for pseudoplastic systems, J. Colloid Sci. 20(1965) 417-437.
-
[40] S.H. Wasserman, W.W. Graessley, Prediction of linear viscoelastic response for entangled polyolefin melts from molecular weight distribution, Polym. Eng. Sci. 36(1996) 852-861.
-
计量
- PDF下载量: 0
- 文章访问数: 1029
- HTML全文浏览量: 24