A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes

Xiao-Juan Liao Guo-Song Chen

引用本文: Xiao-Juan Liao,  Guo-Song Chen. A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes[J]. Chinese Chemical Letters, 2016, 27(4): 583-587. shu
Citation:  Xiao-Juan Liao,  Guo-Song Chen. A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes[J]. Chinese Chemical Letters, 2016, 27(4): 583-587. shu

A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes

  • 基金项目:

    National Natural Science Foundation of China (No. 21204022), Research Fund for the Doctoral Program of Higher Education of China (No. 20120076120005), the Fundamental Research Funds for the Central Universities, and the Large Instruments Open Foundation of East China Normal University (No. 201409251425) are acknowledged for their financial supports.

摘要: In this work, a monomer with double bond was introduced to the surface of clay nanosheets via inclusion complexation between cyclodextrin (CD) host and azobenzene (Azo) guest, as well as electrostatic interaction between clay nanoplatelets and cations of azobenzene derivatives. The obtained supra-structure acts as a supramolecular cross-linker in its copolymerization with macromonomer PEG resulting in a hybrid supramolecular hydrogel. Only viscous liquid was obtained in the absence of clay nanoplatelets, revealing the supramolecular cross-linker played an important role in the hydrogel formation. Such hybrid supramolecular hydrogel exhibited good stability and shear thinning property.

English

    1. [1] M.Y. Guo, M. Jiang, Supramolecular hydrogels with CdS quantum dots incorporated by host-guest interactions, Macromol. Rapid Commun. 31(2010) 1736-1739.

    2. [2] K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansioncontraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions, Angew. Chem. Int. Ed. 54(2015) 8984-8987.

    3. [3] X.F. Ji, F.H. Huang, A rapidly self-healing supramolecular polymer hydrogel, Sci. China Chem. 58(2015) 436-437.

    4. [4] H. Chen, X. Ma, S.F. Wu, H. Tian, A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness, Angew. Chem. Int. Ed. 53(2014) 14149-14152.

    5. [5] X.Y. Dai, Y.Y. Zhang, L.N. Gao, et al., A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel, Adv. Mater. 27(2015) 3566-3571.

    6. [6] Y. Chen, X.H. Pang, C.M. Dong, Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry, Adv. Funct. Mater. 20(2010) 579-586.

    7. [7] X.J. Xu, E.A. Appel, X. Liu, et al., Formation of cucurbit[8] uril-based supramolecular hydrogel beads using droplet-based microfluidics, Biomacromolecules 16(2015) 2743-2749.

    8. [8] S.Z. Zu, B.H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers:formation of supramolecular hydrogel, J. Phys. Chem. C 113(2009) 13651-13657.

    9. [9] G.C. Yu, X.Z. Yan, C.Y. Han, F. Huang, Characterization of supramolecular gels, Chem. Soc. Rev. 42(2013) 6697-6722.

    10. [10] X.Z. Yan, F. Wang, B. Zheng, F. Huang, Stimuli-responsive supramolecular polymeric materials, Chem. Soc. Rev. 41(2012) 6042-6065.

    11. [11] H. Komatsu, S. Matsumoto, S. Tamaru, et al., Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release, J. Am. Chem. Soc. 131(2009) 5580-5585.

    12. [12] M. Ikeda, T. Tanida, T. Yoshii, et al., Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids, Nat. Chem. 6(2014) 511-518.

    13. [13] K.M. Huh, Y.W. Cho, H. Chung, et al., Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and acyclodextrin, Macromol. Biosci. 4(2004) 92-99.

    14. [14] J.H. Yu, H.L. Fan, J. Huang, Fabrication and evaluation of reduction-sensitive supramolecular hydrogel based on cyclodextrin/polymer inclusion for injectable drug-carrier application, Soft Matter 7(2011) 7386-7394.

    15. [15] A. Harada, Y. Takashima, M. Nakahata, Supramolecular polymeric materials via cyclodextrin-guest interactions, Acc. Chem. Res. 47(2014) 2128-2140.

    16. [16] M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive selfhealing materials formed from host-guest polymers, Nat. Commun. 2(2011) 487-502.

    17. [17] H. Yamaguchi, Y. Kobayashi, R. Kobayashi, et al., Photoswitchable gel assembly based on molecular recognition, Nat. Commun. 3(2012) 603.

    18. [18] K. Haraguchi, T. Takehisa, Nanocomposite hydrogels:a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties, Adv. Mater. 14(2002) 1120-1124.

    19. [19] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials, Mater. Sci. Eng. 28(2000) 1-63.

    20. [20] K. Haraguchi, Nanocomposite hydrogels, Curr. Opin. Solid State Mater. Sci. 11(2007) 47-54.

    21. [21] K. Haraguchi, H.J. Li, Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels, Angew. Chem. Int. Ed. 44(2005) 6500-6504.

    22. [22] K. Haraguchi, Soft nanohybrid materials consisting of polymer-clay networks, Adv. Polym. Sci. 267(2015) 187-248.

    23. [23] J.H. Liu, G.S. Chen, M.Y. Guo, M. Jiang, Dual stimuli-responsive supramolecular hydrogel based on hybrid inclusion complex (HIC), Macromolecules 43(2010) 8086-8093.

    24. [24] J.H. Liu, G.S. Chen, M. Jiang, Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers, Macromolecules 44(2011) 7682-7691.

    25. [25] P. Du, G.S. Chen, M. Jiang, Electrochemically sensitive supra-crosslink and its corresponding hydrogel, Sci. China Chem. 55(2012) 836-843.

    26. [26] Y.Y. Liu, X.D. Fan, L. Gao, Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide, Macromol. Biosci. 3(2003) 715-719.

    27. [27] A.M. Sanchez, R.H. de Rossi, Effect of β-cyclodextrin on the thermal cis-trans isomerization of azobenzenes, J. Org. Chem. 61(1996) 3446-3451.

    28. [28] Y. Liu, Y.L. Zhao, H.Y. Zhang, et al., Spectrophotometric study of inclusion complexation of aliphatic alcohols by β-cyclodextrins with azobenzene tether, J. Phys. Chem. B 108(2004) 8836-8843.

    29. [29] X.J. Liao, G.S. Chen, X.X. Liu, et al., Photoresponsive pseudopolyrotaxane hydrogels based on competition of host-guest Interactions, Angew. Chem. Int. Ed. 49(2010) 4409-4413.

    30. [30] N.N. Herrera, J.M. Letoffe, J.P. Reymond, E. Bourgeat-Lami, Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes, J. Mater. Chem. 15(2005) 863-871.

    31. [31] S. Borsacchi, M. Geppi, L. Ricci, G. Ruggeri, C.A. Veracini, Interactions at the surface of organophilic-modified laponites:a multinuclear solid-state NMR study, Langmuir 23(2007) 3953-3960.

    32. [32] X.J. Liao, G.S. Chen, M. Jiang, Pseudopolyrotaxanes on inorganic nanoplatelets and their supramolecular hydrogels, Langmuir 27(2011) 12650-12656.

    33. [33] Y.F. Xi, Z. Ding, H.P. He, R.L. Frost, Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide, Spectrochim. Acta, A:Mol. Biomol. Spectrosc. 61(2005) 515-525.

    34. [34] J. Araki, K. Ito, Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials, Soft Matter 3(2007) 1456-1473.

    35. [35] J. Li, Cyclodextrin inclusion polymers forming hydrogels, Adv. Polym. Sci. 222(2009) 175-203.

    36. [36] X.P. Ni, A.L. Cheng, J. Li, Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and a-cyclodextrin, J. Biomed. Mater. Res. A 88(2009) 1031-1036.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  726
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2016-03-02
  • 收稿日期:  2015-12-28
  • 修回日期:  2016-02-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章