Citation: Xiao-Juan Liao, Guo-Song Chen. A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes[J]. Chinese Chemical Letters, 2016, 27(4): 583-587.
A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes
English
A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes
-
Key words:
- Host-guest chemistry
- / Clay
- / Supramolecular hydrogel
- / Cyclodextrin
- / Electrostatic interaction
-
-
[1] M.Y. Guo, M. Jiang, Supramolecular hydrogels with CdS quantum dots incorporated by host-guest interactions, Macromol. Rapid Commun. 31(2010) 1736-1739.
-
[2] K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansioncontraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions, Angew. Chem. Int. Ed. 54(2015) 8984-8987.
-
[3] X.F. Ji, F.H. Huang, A rapidly self-healing supramolecular polymer hydrogel, Sci. China Chem. 58(2015) 436-437.
-
[4] H. Chen, X. Ma, S.F. Wu, H. Tian, A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness, Angew. Chem. Int. Ed. 53(2014) 14149-14152.
-
[5] X.Y. Dai, Y.Y. Zhang, L.N. Gao, et al., A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel, Adv. Mater. 27(2015) 3566-3571.
-
[6] Y. Chen, X.H. Pang, C.M. Dong, Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry, Adv. Funct. Mater. 20(2010) 579-586.
-
[7] X.J. Xu, E.A. Appel, X. Liu, et al., Formation of cucurbit[8] uril-based supramolecular hydrogel beads using droplet-based microfluidics, Biomacromolecules 16(2015) 2743-2749.
-
[8] S.Z. Zu, B.H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers:formation of supramolecular hydrogel, J. Phys. Chem. C 113(2009) 13651-13657.
-
[9] G.C. Yu, X.Z. Yan, C.Y. Han, F. Huang, Characterization of supramolecular gels, Chem. Soc. Rev. 42(2013) 6697-6722.
-
[10] X.Z. Yan, F. Wang, B. Zheng, F. Huang, Stimuli-responsive supramolecular polymeric materials, Chem. Soc. Rev. 41(2012) 6042-6065.
-
[11] H. Komatsu, S. Matsumoto, S. Tamaru, et al., Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release, J. Am. Chem. Soc. 131(2009) 5580-5585.
-
[12] M. Ikeda, T. Tanida, T. Yoshii, et al., Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids, Nat. Chem. 6(2014) 511-518.
-
[13] K.M. Huh, Y.W. Cho, H. Chung, et al., Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and acyclodextrin, Macromol. Biosci. 4(2004) 92-99.
-
[14] J.H. Yu, H.L. Fan, J. Huang, Fabrication and evaluation of reduction-sensitive supramolecular hydrogel based on cyclodextrin/polymer inclusion for injectable drug-carrier application, Soft Matter 7(2011) 7386-7394.
-
[15] A. Harada, Y. Takashima, M. Nakahata, Supramolecular polymeric materials via cyclodextrin-guest interactions, Acc. Chem. Res. 47(2014) 2128-2140.
-
[16] M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive selfhealing materials formed from host-guest polymers, Nat. Commun. 2(2011) 487-502.
-
[17] H. Yamaguchi, Y. Kobayashi, R. Kobayashi, et al., Photoswitchable gel assembly based on molecular recognition, Nat. Commun. 3(2012) 603.
-
[18] K. Haraguchi, T. Takehisa, Nanocomposite hydrogels:a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties, Adv. Mater. 14(2002) 1120-1124.
-
[19] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials, Mater. Sci. Eng. 28(2000) 1-63.
-
[20] K. Haraguchi, Nanocomposite hydrogels, Curr. Opin. Solid State Mater. Sci. 11(2007) 47-54.
-
[21] K. Haraguchi, H.J. Li, Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels, Angew. Chem. Int. Ed. 44(2005) 6500-6504.
-
[22] K. Haraguchi, Soft nanohybrid materials consisting of polymer-clay networks, Adv. Polym. Sci. 267(2015) 187-248.
-
[23] J.H. Liu, G.S. Chen, M.Y. Guo, M. Jiang, Dual stimuli-responsive supramolecular hydrogel based on hybrid inclusion complex (HIC), Macromolecules 43(2010) 8086-8093.
-
[24] J.H. Liu, G.S. Chen, M. Jiang, Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers, Macromolecules 44(2011) 7682-7691.
-
[25] P. Du, G.S. Chen, M. Jiang, Electrochemically sensitive supra-crosslink and its corresponding hydrogel, Sci. China Chem. 55(2012) 836-843.
-
[26] Y.Y. Liu, X.D. Fan, L. Gao, Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide, Macromol. Biosci. 3(2003) 715-719.
-
[27] A.M. Sanchez, R.H. de Rossi, Effect of β-cyclodextrin on the thermal cis-trans isomerization of azobenzenes, J. Org. Chem. 61(1996) 3446-3451.
-
[28] Y. Liu, Y.L. Zhao, H.Y. Zhang, et al., Spectrophotometric study of inclusion complexation of aliphatic alcohols by β-cyclodextrins with azobenzene tether, J. Phys. Chem. B 108(2004) 8836-8843.
-
[29] X.J. Liao, G.S. Chen, X.X. Liu, et al., Photoresponsive pseudopolyrotaxane hydrogels based on competition of host-guest Interactions, Angew. Chem. Int. Ed. 49(2010) 4409-4413.
-
[30] N.N. Herrera, J.M. Letoffe, J.P. Reymond, E. Bourgeat-Lami, Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes, J. Mater. Chem. 15(2005) 863-871.
-
[31] S. Borsacchi, M. Geppi, L. Ricci, G. Ruggeri, C.A. Veracini, Interactions at the surface of organophilic-modified laponites:a multinuclear solid-state NMR study, Langmuir 23(2007) 3953-3960.
-
[32] X.J. Liao, G.S. Chen, M. Jiang, Pseudopolyrotaxanes on inorganic nanoplatelets and their supramolecular hydrogels, Langmuir 27(2011) 12650-12656.
-
[33] Y.F. Xi, Z. Ding, H.P. He, R.L. Frost, Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide, Spectrochim. Acta, A:Mol. Biomol. Spectrosc. 61(2005) 515-525.
-
[34] J. Araki, K. Ito, Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials, Soft Matter 3(2007) 1456-1473.
-
[35] J. Li, Cyclodextrin inclusion polymers forming hydrogels, Adv. Polym. Sci. 222(2009) 175-203.
-
[36] X.P. Ni, A.L. Cheng, J. Li, Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and a-cyclodextrin, J. Biomed. Mater. Res. A 88(2009) 1031-1036.
-
计量
- PDF下载量: 0
- 文章访问数: 726
- HTML全文浏览量: 28