Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-free or both ligand- and base-free conditions

Ying-Wei Zhao Qiang Feng Qiu-Ling Song

引用本文: Ying-Wei Zhao,  Qiang Feng,  Qiu-Ling Song. Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-free or both ligand- and base-free conditions[J]. Chinese Chemical Letters, 2016, 27(4): 571-574. shu
Citation:  Ying-Wei Zhao,  Qiang Feng,  Qiu-Ling Song. Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-free or both ligand- and base-free conditions[J]. Chinese Chemical Letters, 2016, 27(4): 571-574. shu

Copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids under ligand-free or both ligand- and base-free conditions

  • 基金项目:

    Financial support from the National Science Foundation of China (No. 21202049), the Recruitment Program of Global Experts (1000 Talents Plan) and Fujian Hundred Talents Plan and Program of Innovative Research Team of Huaqiao University are gratefully acknowledged.

摘要: An efficient copper-catalyzed decarboxylative hydroboration of phenylpropiolic acids with bis(pinacolato) diboron was developed, affording β-vinylboronates as the only products in high yields. Extra hydrogen sources such as methanol are not needed in this catalytic system. This reaction could be performed successfully under ligand- and base-free conditions. It demonstrated that phenylpropiolic acids can be employed as alkyne synthons in the hydroboration reaction and exhibited good reactivity and higher selectivity than terminal alkynes.

English

    1. [1] B. Carboni, L. Monnier, Recent developments in the chemistry of amine- and phosphine-boranes, Tetrahedron 55(1999) 1197-1248.

    2. [2] (a) H.C. Brown, T. Hamaoka, N. Ravindran, Reaction of alkenylboronic acids with iodine under the influence of base. Simple procedure for the stereospecific conversion of terminal alkynes into trans-1-alkenyl iodides via hydroboration, J. Am. Chem. Soc. 95(1973) 5786-5788;

    3. [3]

      (b) G.A. Molander, N.M. Ellis, Highly stereoselective synthesis of cis-alkenyl pinacolboronates and potassium cis-alkenyltrifluoroborates via a hydroboration/protodeboronation approach, J. Org. Chem. 73(2008) 6841-6844;

    4. [4]

      (c) R.E. Shade, A.M. Hyde, J.C. Olsen, C.A. Merlic, Copper-promoted coupling of vinyl boronates and alcohols:a mild synthesis of allyl vinyl ethers, J. Am. Chem. Soc. 132(2010) 1202-1203;

    5. [5]

      (d) P.J. Riss, S. Lu, S. Telu, F.I. Aigbirhio, V.W. Pike, CuI-catalyzed 11C carboxylation of boronic acid esters:a rapid and convenient entry to 11C-labeled carboxylic acids, esters, and amides, Angew. Chem. Int. Ed. 51(2012) 2698-2702;

    6. [6]

      (e) N.R. Candeias, F. Montalbano, P.M.S.D. Cal, P.M.P. Gois, Boronic acids and esters in the Petasis-borono Mannich multicomponent reaction, Chem. Rev. 110(2010) 6169-6193;

    7. [7]

      (f) M. Tredwell, S.M. Preshlock, N.J. Taylor, et al., A general copper-mediated nucleophilic 18F fluorination of arenes, Angew. Chem. Int. Ed. 53(2014) 7751-7755.

    8. [3] (a) Y.D. Bidal, F. Lazreg, C.S.J. Cazin, Copper-catalyzed regioselective formation of Tri- and tetrasubstituted vinylboronates in air, ACS Catal. 4(2014) 1564-1569;

    9. [9]

      (b) C. Gunanathan, M. Hö lscher, F. Pan, W. Leitner, Ruthenium catalyzed hydroboration of terminal alkynes to Z-vinylboronates, J. Am. Chem. Soc. 134(2012) 14349-14352.

    10. [4] K. Takahashi, T. Ishiyama, N. Miyaura, A borylcopper species generated from bis(pinacolato)diboron and its additions to α,β-unsaturated carbonyl compounds and terminal alkynes, J. Organomet. Chem. 625(2001) 47-53.

    11. [5] (a) J.E. Lee, J. Kwon, J. Yun, Copper-catalyzed addition of diboron reagents to[small alpha],[small beta]-acetylenic esters:efficient synthesis of β-boryl-α,bethylenic esters, Chem. Commun. (2008) 733-734;

    12. [12]

      (b) H.R. Kim, I.G. Jung, K. Yoo, et al., Bis(imidazoline-2-thione)-copper(i) catalyzed regioselective boron addition to internal alkynes, Chem. Commun. 46(2010) 758-760;

    13. [13]

      (c) H.R. Kim, J. Yun, Highly regio- and stereoselective synthesis of alkenylboronic esters by copper-catalyzed boron additions to disubstituted alkynes, Chem. Commun. 47(2011) 2943-2945;

    14. [14]

      (d) H.Y. Jung, J. Yun, Copper-catalyzed double borylation of silylacetylenes:highly regio- and stereoselective synthesis of syn-vicinal diboronates, Org. Lett. 14(2012) 2606-2609;

    15. [15]

      (e) J. Yun, Copper(I)-catalyzed boron addition reactions of alkynes with diboron reagents, Asian J. Org. Chem. 2(2013) 1016-1025.

    16. [6] J. Zhao, Z. Niu, H. Fu, Y. Li, Ligand-free hydroboration of alkynes catalyzed by heterogeneous copper powder with high efficiency, Chem. Commun. 50(2014) 2058-2060.

    17. [7] (a) H. Jang, A.R. Zhugralin, Y. Lee, A.H. Hoveyda, Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC-Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity, J. Am. Chem. Soc. 133(2011) 7859-7871;

    18. [18]

      (b) Y. Lee, H. Jang, A.H. Hoveyda, Vicinal diboronates in high enantiomeric purity through tandem site-selective NHC-Cu-catalyzed boron-copper additions to terminal alkynes, J. Am. Chem. Soc. 131(2009) 18234-18235.

    19. [8] (a) W. Yuan, S. Ma, CuCl-K2CO3-catalyzed highly selective borylcupration of internal alkynes-ligand effect, Org. Biomol. Chem. 10(2012) 7266-7268;

    20. [20]

      (b) K. Semba, T. Fujihara, J. Terao, Y. Tsuji, Copper-catalyzed highly regio-and stereoselective directed hydroboration of unsymmetrical internal alkynes:controlling regioselectivity by choice of catalytic species, Chem. Eur. J. 18(2012) 4179-4184;

    21. [21]

      (c) A.L. Moure, R. Gómez Arrayás, D.J. Cárdenas, I. Alonso, J.C. Carretero, Regiocontrolled CuI-catalyzed borylation of propargylic-functionalized internal alkynes, J. Am. Chem. Soc. 134(2012) 7219-7222.

    22. [9] (a) W. Jia, N. Jiao, Cu-Catalyzed oxidative amidation of propiolic acids under air via decarboxylative coupling, Org. Lett. 12(2010) 2000-2003;

    23. [23]

      (b) D.L. Priebbenow, P. Becker, C. Bolm, Copper-catalyzed oxidative decarboxylative couplings of sulfoximines and aryl propiolic acids, Org. Lett. 15(2013) 6155-6157;

    24. [24]

      (c) X. Li, F. Yang, Y. Wu, Y. Wu, Copper-mediated oxidative decarboxylative coupling of arylpropiolic acids with dialkyl H-phosphonates in water, Org. Lett. 16(2014) 992-995;

    25. [25]

      (d) D. Zhao, C. Gao, X. Su, et al., Copper-catalyzed decarboxylative cross-coupling of alkynyl carboxylic acids with aryl halides, Chem. Commun. 46(2010) 9049-9051;

    26. [26]

      (e) L. Zhang, Z. Hang, Z.Q. Liu, A free-radical-promoted stereospecific decarboxylative silylation of α,β-unsaturated acids with silanes, Angew. Chem. Int. Ed. 55(2016) 236-239.

    27. [10] (a) Q. Song, Q. Feng, M. Zhou, Copper-catalyzed oxidative decarboxylative arylation of benzothiazoles with phenylacetic acids and (α-hydroxyphenylacetic acids with O2 as the sole oxidant, Org. Lett. 15(2013) 5990-5993;

    28. [28]

      (b) Q. Feng, Q. Song, Copper-catalyzed decarboxylative C-N triple bond formation:direct synthesis of benzonitriles from phenylacetic acids under O2 atmosphere, Adv. Synth. Catal. 356(2014) 1697-1702;

    29. [29]

      (c) Q. Feng, Q. Song, Aldehydes and ketones formation:copper-catalyzed aerobic oxidative decarboxylation of phenylacetic acids and (α-hydroxyphenylacetic acids, J. Org. Chem. 79(2014) 1867-1871;

    30. [30]

      (d) Q. Song, Q. Feng, K. Yang, Synthesis of primary amides via copper-catalyzed aerobic decarboxylative ammoxidation of phenylacetic acids and α-hydroxyphenylacetic acids with ammonia in water, Org. Lett. 16(2014) 624-627.

    31. [11] M. Zhou, M. Chen, Y. Zhou, et al., β-Ketophosphonate formation via aerobic oxyphosphorylation of alkynes or alkynyl carboxylic acids with H-phosphonates, Org. Lett. 17(2015) 1786-1789.

    32. [12] Q. Feng, K. Yang, Q. Song, Highly selective copper-catalyzed trifunctionalization of alkynyl carboxylic acids:an efficient route to bis-deuterated β-borylated α,β-styrene, Chem. Commun. 51(2015) 15394-15397.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  757
  • HTML全文浏览量:  25
文章相关
  • 发布日期:  2016-03-02
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-02-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章