Luminescence of coelenterazine derivatives with C-8 extended electronic conjugation

Ming-Liang Yuan Tian-Yu Jiang Lu-Pei Du Min-Yong Li

引用本文: Ming-Liang Yuan,  Tian-Yu Jiang,  Lu-Pei Du,  Min-Yong Li. Luminescence of coelenterazine derivatives with C-8 extended electronic conjugation[J]. Chinese Chemical Letters, 2016, 27(4): 550-554. shu
Citation:  Ming-Liang Yuan,  Tian-Yu Jiang,  Lu-Pei Du,  Min-Yong Li. Luminescence of coelenterazine derivatives with C-8 extended electronic conjugation[J]. Chinese Chemical Letters, 2016, 27(4): 550-554. shu

Luminescence of coelenterazine derivatives with C-8 extended electronic conjugation

  • 基金项目:

    This work was supported by grants from the National Program on Key Basic Research Project (No. 2013CB734000), the National Natural Science Foundation of China (No. 81370085), the Major Project of Science and Technology of Shandong Province (No. 2015ZDJS04001) and the Fundamental Research Funds of Shandong University (No. 2014JC008).

摘要: Replacement of the methylene group at the C-8 position with an extended electronic conjugation is a new promising method to develop red-shifted coelenterazine derivatives. In this paper, we have described an oxygen-containing coelenterazine derivative with a significant red-shifted (63 nm) bioluminescence signal maximum relative to coelenterazine 400a (DeepBlueCTM, 1). In cell imaging, the sulfur-containing coelenterazine derivative displayed a significantly (1.77±0.09; P≤0.01) higher luminescence signal compared to coelenterazine 400a and the oxygen-containing coelenterazine derivative exhibited a slightly (0.74±0.08; P≤0.05) lower luminescence signal. It is beneficial to understand further the underlying mechanisms of bioluminescence.

English

    1. [1] X. Xu, M. Soutto, Q. Xie, et al., Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues, Proc. Natl. Acad. Sci. U.S.A. 104(2007) 10264-10269.

    2. [2] T. Kimura, K. Hiraoka, N. Kasahara, C.R. Logg, Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases, J. Gene Med. 12(2010) 528-537.

    3. [3] T.C. Zhang, L.P. Du, M.Y. Li, BioLeT:a new design strategy for functional bioluminogenic probes, Chin. Chem. Lett. 26(2015) 919-921.

    4. [4] M.P. Hall, J. Unch, B.F. Binkowski, et al., Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, ACS Chem. Biol. 7(2012) 1848-1857.

    5. [5] T. Suzuki, C. Kondo, T. Kanamori, S. Inouye, Video rate bioluminescence imaging of secretory proteins in living cells:localization, secretory frequency, and quantification, Anal. Chem. 415(2011) 182-189.

    6. [6] K.D.G. Pfleger, J.R. Dromey, M.B. Dalrymple, et al., Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells, Cell. Signal. 18(2006) 1664-1670.

    7. [7] W.X. Wu, J. Li, L.Z. Chen, et al., Bioluminescent probe for hydrogen peroxide imaging in vitro and in vivo, Anal. Chem. 86(2014) 9800-9806.

    8. [8] J. Levi, A. De, Z. Cheng, S.S. Gambhir, Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays, J. Am. Chem. Soc. 129(2007) 11900-11901.

    9. [9] A.M. Loening, A.M. Wu, S.S. Gambhir, Red-shifted Renilla reniformis luciferase variants for imaging in living subjects, Nat. Methods 4(2007) 641-643.

    10. [10] T. Hosoya, R. Iimori, S. Yoshida, et al., Concise synthesis of v-coelenterazines, Org. Lett. 17(2015) 3888-3891.

    11. [11] H. Isobe, S. Yamanaka, S. Kuramitsu, K. Yamaguchi, Regulation mechanism of spin-orbit coupling in charge-transfer-induced luminescence of imidazopyrazinone derivatives, J. Am. Chem. Soc. 130(2008) 132-149.

    12. [12] S. Inouye, Y. Sahara-Miura, J. Sato, et al., Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia:comparison of substrate specificity for C2-modified coelenterazines, Protein Expression Purif. 88(2013) 150-156.

    13. [13] R. Nishihara, H. Suzuki, E. Hoshino, et al., Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution, Chem. Commun. 51(2015) 391-394.

    14. [14] C. Wu, H. Nakamura, A. Murai, O. Shimomura, Chemi- and bioluminescence of coelenterazine analogues with a conjugated group at the C-8 position, Tetrahedron Lett. 42(2001) 2997-3000.

    15. [15] G. Giuliani, P. Molinari, G. Ferretti, et al., New red-shifted coelenterazine analogues with an extended electronic conjugation, Tetrahedron Lett. 53(2012) 5114-5118.

    16. [16] N. Vassel, C.D. Cox, R. Naseem, et al., Enzymatic activity of albumin shown by coelenterazine chemiluminescence, Luminescence 27(2012) 234-241.

    17. [17] G.A. Stepanyuk, Z.J. Liu, S.S. Markova, et al., Crystal structure of coelenterazinebinding protein from Renilla muelleri at 1.7 A:why it is not a calcium-regulated photoprotein, Photochem. Photobiol. Sci. 7(2008) 442-447.

    18. [18] Y. Ando, K. Niwa, N. Yamada, et al., Development of a quantitative bio/chemiluminescence spectrometer determining quantum yields:re-examination of the aqueous luminol chemiluminescence standard, Photochem. Photobiol. 83(2007) 1205-1210.

    19. [19] S.V. Markova, E.S. Vysotski, Coelenterazine-dependent luciferases, Biochemistry (Moscow) 80(2015) 714-732.

    20. [20] K. Teranishi, Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds, Bioorg. Chem. 35(2007) 82-111.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  774
  • HTML全文浏览量:  41
文章相关
  • 发布日期:  2016-03-03
  • 收稿日期:  2016-01-14
  • 修回日期:  2016-02-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章