Regulation of oxidative stress inside living cells through polythiophene derivatives

Rong Hu Sheng-Liang Li Hao-Tian Bai Yun-Xia Wang Li-Bing Liu Feng-Ting Lv Shu Wang

引用本文: Rong Hu,  Sheng-Liang Li,  Hao-Tian Bai,  Yun-Xia Wang,  Li-Bing Liu,  Feng-Ting Lv,  Shu Wang. Regulation of oxidative stress inside living cells through polythiophene derivatives[J]. Chinese Chemical Letters, 2016, 27(4): 545-549. shu
Citation:  Rong Hu,  Sheng-Liang Li,  Hao-Tian Bai,  Yun-Xia Wang,  Li-Bing Liu,  Feng-Ting Lv,  Shu Wang. Regulation of oxidative stress inside living cells through polythiophene derivatives[J]. Chinese Chemical Letters, 2016, 27(4): 545-549. shu

Regulation of oxidative stress inside living cells through polythiophene derivatives

  • 基金项目:

    The authors are grateful to the National Natural Science Foundation of China (Nos. 21473220, 21373243, 21473221).

摘要: Oxidative stress stimulated by angiotensin II (Ang II) plays an important role in the progression of inflammation and cardiovascular disease. In this work, polythiophene modified with dihydropyridine groups (PTDHP) realized the control of oxidative stress induced by Angiotensin II stimulation in living cells, by inhibiting the activity of NADPH oxidase via DHP groups. Upon light irradiation, the PTDHP could sensitize surrounding oxygen molecules to generate reactive oxygen species (ROS). The generated ROS oxidized the pendant DHP of polythiophene into pyridine group, which inactivated the control ability of DHP to oxidative stress in living cells. Thus, PTDHP can not only control the intracellular oxidative stress effectively and suppress ROS to some degree in dark, but also regulate its anti-oxidative effect under light irradiation.

English

    1. [1] R. Kumar, C.M. Thomas, Q.C. Yong, W. Chen, K.M. Baker, The intracrine renin-angiotensin system, Clin. Sci. 123(2012) 273-284.

    2. [2] A.R. Brasier, A. Recinos, M.S. Eledrisi, Vascular inflammation and the renin-angiotensin system, Arterioscler. Thromb. Vasc. Biol. 22(2002) 1257-1266.

    3. [3] C. Unterberg, H. Kreuzer, A.B. Buchwald, Renin-angiotensin system and cardiovascular diseases, Med. Klin. 93(1998) 416-425.

    4. [4] C. Tikellis, R.J. Pickering, D. Tsorotes, et al., Activation of the renin-angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse, Hypertension 60(2012) 98-105.

    5. [5] H. Lu, L.A. Cassis, A. Daugherty, Atherosclerosis and arterial blood pressure in mice, Curr. Drug Targets 8(2007) 1181-1189.

    6. [6] A.M. Garrido, K.K. Griendling, NADPH oxidases and angiotensin II receptor signaling, Mol. Cell. Endocrinol. 302(2009) 148-158.

    7. [7] Q. Felty,W.C.Xiong,D.M. Sun,etal.,Estrogen-inducedmitochondrial reactiveoxygen species as signal-transducing messengers, Biochemistry 44(2005) 6900-6909.

    8. [8] H. Sauer, M. Wartenberg, J. Hescheler, Reactive oxygen species as intracellular messengers during cell growth and differentiation, Cell. Physiol. Biochem. 11(2001) 173-186.

    9. [9] B.C. Dickinson, C.J. Chang, A targetable fluorescent probe for imaging hydrogen peroxide in themitochondria of living cells, J.Am. Chem. Soc.130(2008) 9638-9639.

    10. [10] W. Drö ge, Free radicals in the physiological control of cell function, Physiol. Rev. 82(2002) 47-95.

    11. [11] T. Volk, M. Hensel, H. Schuster, W.J. Kox, Secretion of MCP-1 and IL-6 by cytokine stimulated production of reactive oxygen species in endothelial cells, Mol. Cell. Biochem. 206(2000) 105-112.

    12. [12] C.P. Hu, A. Dandapat, J.L. Mehta, Angiotensin II induces capillary formation from endothelial cells via the LOX-1-dependent redox-sensitive pathway, Hypertension 50(2007) 952-957.

    13. [13] M. Nahrendorf, E. Keliher, P. Panizzi, et al., 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis, JACC-Cardiovasc. Imag. 2(2009) 1213-1222.

    14. [14] M.F. Navedo, L.F. Santana, CaV 1.2 sparklets in heart and vascular smooth muscle, J. Mol. Cell. Cardiol. 58(2013) 67-76.

    15. [15] A. Neely, P. Hidalgo, Structure-function of proteins interacting with the α1 poreforming subunit of high-voltage-activated calcium channels, Front. Physiol. 5(2014) 209.

    16. [16] R. Berkels, T. Breitenbach, H. Bartels, et al., Different antioxidative potencies of dihydropyridine calcium channel modulators in various models, Vascul. Pharmacol. 42(2005) 145-152.

    17. [17] H. Toba, T. Shimizu, S. Miki, et al., Channel blockers reduce angiotensin II-induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells, Hypertens. Res. 29(2006) 105-116.

    18. [18] N. Ishii, T. Matsumura, S. Shimoda, E. Araki, Anti-atherosclerotic potential of dihydropyridine calcium channel blockers, J. Atheroscler. Thromb. 19(2012) 693-704.

    19. [19] J.L. Yeh, J.H. Hsu, J.C. Liang, I.-J. Chen, S.-F. Liou, Lercanidipine and labedipinedilol-A attenuate lipopolysaccharide/interferon-gamma-induced inflammation in rat vascular smooth muscle cells through inhibition of HMGB1 release and MMP-2, 9 activities, Atherosclerosis 226(2013) 364-372.

    20. [20] B. Wang, J.Z. Song, H.X. Yuan, et al., Multicellular assembly and light-regulation of cell-cell communication by conjugated polymer materials, Adv. Mater. 26(2014) 2371-2375.

    21. [21] C.L. Zhu, L.B. Liu, Q. Yang, F.T. Lv, S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev. 112(2012) 4687-4735.

    22. [22] A.V. Ambade, B.S. Sandanaraj, A. Klaikherd, S. Thayumanavan, Fluorescent polyelectrolytes as protein sensors, Polym. Int. 56(2007) 474-481.

    23. [23] H.-A. Ho, A. Najari, M. Leclerc, Optical detection of DNA and proteins moth cationic polythiophenes, Acc. Chem. Res. 41(2008) 168-178.

    24. [24] S. Kim, C.-K. Lim, J. Na, et al., Conjugated polymer nanoparticles for biomedical in vivo imaging, Chem. Commun. 46(2010) 1617-1619.

    25. [25] F. Qiu, Q. Zhu, G.S. Tong, et al., Highly fluorescent core-shell hybrid nanoparticles templated by a unimolecular star conjugated polymer for a biological tool, Chem. Commun. 48(2012) 11954-11956.

    26. [26] B.Q. Bao, N.J. Tao, D.L. Yang, et al., A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries, Chem. Commun. 49(2013)10263-10265.

    27. [27] K. Liu, Y.L. Liu, Y.X. Yao, et al., Supramolecular photosensitizers with enhanced antibacterial efficiency, Angew. Chem. Int. Ed. 52(2013) 8285-8289.

    28. [28] C.F. Xing, Q.L. Xu, H.W. Tang, L.B. Liu, S. Wang, Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity, J. Am. Chem. Soc. 131(2009) 13117-13124.

    29. [29] C.L. Zhu, Q. Yang, L.B. Liu, et al., Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells, Adv. Mater. 23(2011) 4805-4810.

    30. [30] R. Hu, F.Y. Wang, S.L. Li, et al., ROS self-scavenging polythiophene materials for cell imaging, Polym. Chem. 6(2015) 8244-8247.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  714
  • HTML全文浏览量:  31
文章相关
  • 发布日期:  2016-02-27
  • 收稿日期:  2016-01-22
  • 修回日期:  2016-01-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章