Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility

Zhuo-Ting Huang Cong-Cheng Fan Guo-Biao Xue Jia-Ke Wu Shuang Liu Huan-Bin Li Hong-Zheng Chen Han-Ying Li

引用本文: Zhuo-Ting Huang,  Cong-Cheng Fan,  Guo-Biao Xue,  Jia-Ke Wu,  Shuang Liu,  Huan-Bin Li,  Hong-Zheng Chen,  Han-Ying Li. Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility[J]. Chinese Chemical Letters, 2016, 27(4): 523-526. shu
Citation:  Zhuo-Ting Huang,  Cong-Cheng Fan,  Guo-Biao Xue,  Jia-Ke Wu,  Shuang Liu,  Huan-Bin Li,  Hong-Zheng Chen,  Han-Ying Li. Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility[J]. Chinese Chemical Letters, 2016, 27(4): 523-526. shu

Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility

  • 基金项目:

    This work was supported by the 973 Program (No. 2014CB643503), National Natural Science Foundation of China (Nos. 51373150, 51461165301), Zhejiang Province Natural Science Foundation (No. LZ13E030002) and Fundamental Research Funds for the Central Universities.

摘要: Field-effect transistors (FETs) of three diketopyrrolopyrroles (DPP)-based small molecules, 3, 6-bis(5-phenylthiophene-2-yl)-2, 5-bis(2-ethylhexyl)pyrrolo[3, 4-c]pyrrole-1, 4-dione (PDPPP), 3, 6-bis(5-(4-fluorophenyl) thiophene-2-yl)-2, 5-bis(2-ethylhexyl)pyrrolo[3, 4-c]pyrrole-1, 4-dione (FPDPPPF) and 3, 6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2, 5-bis(2-ethylhexyl)pyrrolo[3, 4-c]pyrrole-1, 4-dione (BuPDPPPBu), have been studied in this work. Well aligned crystals of the three molecules were grown from para-xylene by droplet-pinned crystallizationmethod. FETs based on these aligned crystals exhibit a holemobility up to 0.19 cm2 V-1 s-1 and electronmobility up to 0.008 cm2 V-1 s-1. The achieved hole mobility is of the same order of magnitude as reported highest hole mobility for DPP-based small molecules, but it is much lower than that of the high-performanceDPP-based polymers. The relative lowmobility ismainly attributed to the rough crystal surfaces with steps and, thus, non-smooth charge transport channels at the interfaces between the crystals and the dielectrics. This work has implications for understanding the low charge mobility of DPP-based small molecules.

English

    1. [1] M.J. Kang, K.J. Baeg, D. Khim, Y.Y. Noh, D.Y. Kim, Printed, flexible, organic nanofloating-gate memory:effects of metal nanoparticles and blocking dielectrics on memory characteristics, Adv. Funct. Mater. 23(2013) 3503-3512.

    2. [2] J.K. Wu, C.C. Fan, G.B. Xue, et al., Interfacing solution-grown C60 and (3-Pyrrolinium)(CdCl3) single crystals for high-mobility transistor-based memory devices, Adv. Mater. 27(2015) 4476-4480.

    3. [3] G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nat. Mater. 3(2004) 106-110.

    4. [4] T. Sekitani, T. Yokota, U. Zschieschang, et al., Organic nonvolatile memory transistors for flexible sensor arrays, Science 326(2009) 1516-1519.

    5. [5] Y.B. Yuan, G. Giri, A.L. Ayzner, et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method, Nat. Commun. 5(2014) 3005.

    6. [6] V. Podzorov, E. Menard, A. Borissov, et al., Intrinsic charge transport on the surface of organic semiconductors, Phys. Rev. Lett. 93(2004) 086602.

    7. [7] Y. Diao, B.C.K. Tee, G. Giri, et al., Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains, Nat. Mater. 12(2013) 665-671.

    8. [8] C. Luo, A.K.K. Kyaw, L.A. Perez, et al., General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(2014) 2764-2771.

    9. [9] J. Takeya, M. Yamagishi, Y. Tominari, et al., Very high-mobility organic singlecrystal transistors with in-crystal conduction channels, Appl. Phys. Lett. 90(2007) 102120.

    10. [10] I. Kang, H.J. Yun, D.S. Chung, S.K. Kwon, Y.H. Kim, Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc. 135(2013) 14896-14899.

    11. [11] H.Y. Li, B.C.K. Tee, J.J. Cha, et al., High-mobility field-effect transistors from largearea solution-grown aligned C60 single crystals, J. Am. Chem. Soc. 134(2012) 2760-2765.

    12. [12] G.B. Xue, C.C. Fan, J.K. Wu, et al., Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents, Mater. Horiz. 2(2015) 344-349.

    13. [13] G.B. Xue, J.K. Wu, C.C. Fan, et al., Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues, Mater. Horiz. (2016), http://dx.doi.org/10.1039/C5MH00190K.

    14. [14] J. Liu, H.T. Zhang, H.L. Dong, et al., High mobility emissive organic semiconductor, Nat. Commun. 6(2015) 10032.

    15. [15] J.H. Dou, Y.Q. Zheng, Z.F. Yao, et al., A cofacially stacked electron-deficient small molecule with a high electron mobility of over 10 cm2 V-1 s-1 in air, Adv. Mater. 27(2015) 8051-8055.

    16. [16] F.J. Zhang, Y.B. Hu, T. Schuettfort, et al., Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thinfilm transistors with mobility of up to 3.50 cm2 V-1 s-1, J. Am. Chem. Soc. 135(2013) 2338-2349.

    17. [17] Z.R. Yi, S. Wang, Y.Q. Liu, Design of high-mobility diketopyrrolopyrrole-based pconjugated copolymers for organic thin-film transistors, Adv. Mater. 27(2015) 3589-3606.

    18. [18] M.J. Cho, J. Shin, S.H. Yoon, et al., A high-mobility terselenophene and diketopyrrolopyrrole containing copolymer in solution-processed thin film transistors, Chem. Commun. 49(2013) 7132-7134.

    19. [19] Y.L. Qiao, Y.L. Guo, C.M. Yu, et al., Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable nchannel organic field-effect transistors, J. Am. Chem. Soc. 134(2012) 4084-4087.

    20. [20] H.J. Chen, Y.L. Guo, G. Yu, et al., Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors, Adv. Mater. 24(2012) 4618-4622.

    21. [21] J. Lee, A.R. Han, J. Kim, et al., Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities, J. Am. Chem. Soc. 134(2012) 20713-20721.

    22. [22] J. Lee, A.R. Han, H. Yu, et al., Boosting the ambipolar performance of solutionprocessable polymer semiconductors via hybrid side-chain engineering, J. Am. Chem. Soc. 135(2013) 9540-9547.

    23. [23] J. Li, Y. Zhao, H.S. Tan, et al., A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(2012) 754.

    24. [24] J.Y. Back, H. Yu, I. Song, et al., Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering, Chem. Mater. 27(2015) 1732-1739.

    25. [25] B. Sun, W. Hong, Z.Q. Yan, H. Aziz, Y.N. Li, Record high electron mobility of 6.3 cm2 V-1 s-1 achieved for polymer semiconductors using a new building block, Adv. Mater. 26(2014) 2636-2642.

    26. [26] H.J. Yun, S.J. Kang, Y. Xu, et al., Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution, Adv. Mater. 26(2014) 7300-7307.

    27. [27] S.L. Suraru, U. Zschieschang, H. Klauk, F. Würthner, Diketopyrrolopyrrole as a pchannel organic semiconductor for high performance OTFTs, Chem. Commun. 47(2011) 1767-1769.

    28. [28] W.S. Yoon, S.K. Park, I. Cho, et al., High-mobility n-type organic transistors based on a crystallized diketopyrrolopyrrole derivative, Adv. Funct. Mater. 23(2013) 3519-3524.

    29. [29] H.Q. Shi, Z.W. Gu, X. Gu, et al., Effect of end-groups on the photovoltaic property of diphenyl substituted diketopyrrolopyrrole derivatives, Synth. Met. 188(2014) 66-71.

    30. [30] J.C. Huang, H.Y. Li, X. Mo, et al., Crystal growth and characterization of fluorinated perylene diimides, Chem. Res. Chin. Univ. 30(2014) 63-67.

    31. [31] J.G. Mei, Y. Diao, A.L. Appleton, L. Fang, Z.N. Bao, Integrated materials design of organic semiconductors for field-effect transistors, J. Am. Chem. Soc. 135(2013) 6724-6746.

    32. [32] K. Zhou, H.L. Dong, H.L. Zhang, W.P. Hu, High performance n-type and ambipolar small organic semiconductors for organic thin film transistors, Phys. Chem. Chem. Phys. 16(2014) 22448-22457.

    33. [33] J. Huang, D. Wu, H.J. Ge, S.H. Liu, J. Yin, Fluorinated 1,8-naphthalimides:synthesis, solid structure and properties, Chin. Chem. Lett. 25(2014) 1399-1402.

    34. [34] H.Y. Li, J.G. Mei, A.L. Ayznera, et al., A simple droplet pinning method for polymer film deposition for measuring charge transport in a thin film transistor, Org. Electron. 13(2012) 2450-2460.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  694
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2016-02-12
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-01-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章