Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes

Bin Wang Hui Yang Ya-Bo Xie Yi-Bo Dou Min-Jian Zhao Jian-Rong Li

引用本文: Bin Wang,  Hui Yang,  Ya-Bo Xie,  Yi-Bo Dou,  Min-Jian Zhao,  Jian-Rong Li. Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes[J]. Chinese Chemical Letters, 2016, 27(4): 502-506. shu
Citation:  Bin Wang,  Hui Yang,  Ya-Bo Xie,  Yi-Bo Dou,  Min-Jian Zhao,  Jian-Rong Li. Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes[J]. Chinese Chemical Letters, 2016, 27(4): 502-506. shu

Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes

  • 基金项目:

    This work was financially supported by the NSFC (Nos. 21322601, 21271015, 21406006, andU1407119) and Program for New Century Excellent Talents in University (No. NCET-13-0647).

摘要: Two new metal-organic frameworks (MOFs),[Cu2(H2O)2(BCPIA)] (BUT-20) and (Me2NH2)[In(BCPIA)] (BUT-21) were designed and synthesized through the solvothermal reaction between a newly created desymmetric 4-connected ligand, 5-(2, 6-bis(4-carboxyphenyl)pyridin-4-yl)isophthalic acid (H4BCPIA) and Cu(NO3)2·2.5H2O or In(NO3)3·5H2O, respectively, and characterized by single-crystal and powder Xray diffraction, thermogravimetric analysis, infrared spectroscopy, and elemental analysis. The two MOFs have three-dimensional structures, in which both the BCPIA4-ligand and metal-containing entities, Cu2(COO)4(H2O)2 and In(COO)4 act as 4-connected nodes. However, different linkage configurations of the two metal-containing nodes, quadrilateral Cu2(COO)4(H2O)2 and tetrahedral In(COO)4, lead to distinct structural networks of BUT-20 and -21, with Nbo and Unc topologies, respectively.

English

    1. [1] J.T. Jia, L. Wang, F.X. Sun, et al., The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains, Chemistry 20(2014) 9073-9080.

    2. [2] L. Qin, Z.M. Ju, Z.J. Wang, et al., Interpenetrated metal-organic frameworks with selective gas adsorption and luminescent properties, Cryst. Growth Des. 14(2014) 2742-2746.

    3. [3] J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112(2012) 869-932.

    4. [4] D. Liu, J.P. Lang, B.F. Abrahams, Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation, J. Am. Chem. Soc. 133(2011) 11042-11045.

    5. [5] S. Pramanik, C. Zheng, X. Zhang, T.J. Emge, J. Li, New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds, J. Am. Chem. Soc. 133(2011) 4153-4155.

    6. [6] S.R. Zhang, D.Y. Du, J.S. Qin, et al., A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metalorganic framework, Chemistry 20(2014) 3589-3594.

    7. [7] M.M. Chen, X. Zhou, H.X. Li, X.X. Yang, J.P. Lang, Luminescent two-dimensional coordination polymer for selective and recyclable sensing of nitroaromatic compounds with high sensitivity in water, Cryst. Growth Des. 15(2015) 2753-2760.

    8. [8] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25(2014) 957-961.

    9. [9] X.Y. Dong, X.P. Hu, H.C. Yao, et al., Alkaline earth metal (Mg, Sr, Ba)-organic frameworks based on 2,20,6,60-tetracarboxybiphenyl for proton conduction, Inorg. Chem. 53(2014) 12050-12057.

    10. [10] D.Y. Shi, C. He, B. Qi, et al., Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation, Chem. Sci. 6(2015) 1035-1042.

    11. [11] K. Mo, Y.H. Yang, Y. Cui, A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis, J. Am. Chem. Soc. 136(2014) 1746-1749.

    12. [12] D. Liu, Z.G. Ren, H.X. Li, et al., Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective[2+2] photodimerization reactions, Angew. Chem. Int. Ed. 49(2010) 4767-4770.

    13. [13] K.H. He, Y.W. Li, Y.Q. Chen, Z. Chang, A new 8-connected self-penetrating metalorganic framework based on dinuclear cadmium clusters as secondary building units, Chin. Chem. Lett. 24(2013) 691-694.

    14. [14] F. Wang, H.R. Fu, J. Zhang, Homochiral metal-organic framework with intrinsic chiral topology and helical channels, Cryst. Growth Des. 15(2015) 1568-1571.

    15. [15] Y. Han, J.R. Li, Y.B. Xie, G.S. Guo, Substitution reactions in metal-organic frameworks and metal-organic polyhedra, Chem. Soc. Rev. 43(2014) 5952-5981.

    16. [16] E. Lee, Y. Kim, J. Heo, K.M. Park, 3D metal-organic framework based on a lower-rim aci δ-functionalized calix[4] arene:crystal-to-crystal transformation upon lattice solvent removal, Cryst. Growth Des. 15(2015) 3556-3560.

    17. [17] Q.G. Zhai, C.Z. Lu, X.Y. Wu, S.R. Batten, Coligand modulated six-, eight-, and tenconnected Zn/Cd-1, 2, 4-triazolate frameworks based on mono-, bi-, tri-, penta-, and heptanuclear cluster units, Cryst Growth Des. 7(2007) 2332-2342.

    18. [18] T.P. Hu, W.H. Bi, X.Q. Hu, X.L. Zhao, D.F. Sun, Construction of metal-organic frameworks with novel {Zn8O13} SBU or chiral channels through in situ ligand reaction, Cryst. Growth Des. 10(2010) 3324-3326.

    19. [19] D.Q. Yuan, D. Zhao, D.F. Sun, H.C. Zhou, An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gasuptake capacity, Angew. Chem. Int. Ed. 49(2010) 5357-5361.

    20. [20] D. Zhao, D.Q. Yuan, D.F. Sun, H.C. Zhou, Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows, J. Am. Chem. Soc. 131(2009) 9186-9188.

    21. [21] B. Wang, H.L. Huang, X.L. Lv, et al., Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization, Inorg. Chem. 53(2014) 9254-9259.

    22. [22] K.K. Wang, H.Q. Huang, W.J. Xue, et al., An ultrastable Zr metal-organic framework with a thiophene-type ligand containing methyl groups, CrystEngComm 17(2015) 3586-3590.

    23. [23] Y. Yan, S.H. Yang, A.J. Blake, M. Schrö der, Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage, Acc. Chem. Res. 47(2014) 296-307.

    24. [24] Bruker AXS Inc., APEX Software Package, Bruker Molecular Analysis Research Tool Version 2008.4, Bruker AXS Inc., Madison, WI, 2008.

    25. [25] G.M. Sheldrick, SADABS Program for Absorption Correction of Area Detector Frames, Bruker AXS, Inc., Madison, WI, 2001.

    26. [26] G.M. Sheldrick, SHELXTL-97 Structure Determination Software Suite, Bruker AXS, Inc., Madison, WI, 2008.

    27. [27] A.L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36(2003) 7-13.

    28. [28] J.X. Yang, X.T. Tao, C.X. Yuan, et al., A facile synthesis and properties of multicarbazole molecules containing multiple vinylene bridges, J. Am. Chem. Soc. 127(2005) 3278-3279.

    29. [29] X. Lin, I. Telepeni, A.J. Blake, et al., High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials:the role of pore size, ligand functionalization, and exposed metal sites, J. Am. Chem. Soc. 131(2009) 2159-2171.

    30. [30] S.Q. Ma, D.F. Sun, J.M. Simmons, et al., Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake, J. Am. Chem. Soc. 130(2008) 1012-1016.

    31. [31] B.L. Chen, N.W. Ockwig, A.R. Millward, D.S. Contreras, O.M. Yaghi, High H2 adsorption in a microporous metal-organic framework with open metal sites, Angew. Chem. Int. Ed. 44(2005) 4745-4749.

    32. [32] B. Li, H.M. Wen, H.L. Wang, et al., A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity, J. Am. Chem. Soc. 136(2014) 6207-6210.

    33. [33] H.M. Wen, B. Li, D.Q. Yuan, et al., A porous metal-organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane, J. Mater. Chem. A 2(2014) 11516-11522.

    34. [34] L.B. Sun, H.Z. Xing, Z.Q. Liang, J.H. Yu, R.R. Xu, A 4+4 strategy for synthesis of zeolitic metal-organic frameworks:an indium-MOF with SOD topology as a lightharvesting antenna, Chem. Commun. 49(2013) 11155-11157.

    35. [35] J.M. Gu, S.J. Kim, Y. Kim, S. Huh, Structural isomerism of an anionic nanoporous In-MOF with interpenetrated diamond-like topology, CrystEngComm 14(2012) 1819-1824.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  837
  • HTML全文浏览量:  35
文章相关
  • 发布日期:  2016-01-25
  • 收稿日期:  2015-09-09
  • 修回日期:  2015-12-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章