Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles

Jian Zhang Shu-Sen Kang Zhe Zhang Mao Li

引用本文: Jian Zhang,  Shu-Sen Kang,  Zhe Zhang,  Mao Li. Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles[J]. Chinese Chemical Letters, 2016, 27(4): 487-491. shu
Citation:  Jian Zhang,  Shu-Sen Kang,  Zhe Zhang,  Mao Li. Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles[J]. Chinese Chemical Letters, 2016, 27(4): 487-491. shu

Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles

  • 基金项目:

    This work was supported by the National Natural Science Foundation of China (Nos. 21374115, 51573181, and 21504088), the Hundred Talents Program, CAS, China.

摘要: The integration of multiscale and multicomponent of molecules and nanoparticles into thin films for applications requires the abilities of controlled their processing and assembly, which has been an great challenge because of the difficulty in manipulating the various materials such as small molecules, complexes, polymers, and inorganic nanomaterials through synergetic combinations of chemical or physical fabrications. Eletropolymerization is of great significance to fabricate polymeric film materials straight on the conductive substrates with tunable morphologies and thicknesses. However, unlimited electrochemical reactions(polymerization) have been usually leading to disadvantageous in ill-defined structure and highly doped state. Thanks to finding of exceptional electrochemical reaction (oligomerization) of N-alkylcarbazole, electrochemical layer by layer assembly has emerged as a promising strategy for a wide library of applications. The capability of this strategy can manipulate various molecules and nanoparticles into the scale and component controllable thin films. Unlike other electropolymerizable precursors such as aniline and thiophene, the resulting di-N-alkylcarbazole is transparent in the visible light region and thus does not impair the intrinsic properties of the components in the film. This account highlights of the typical findings in investigating both single- and multi-components thin films as a forum for discussing new opportunities in exploiting novel designs and applications of optical thin films.

English

    1. [1] K. Ariga, J.P. Hill, Q.M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application, Phys. Chem. Chem. Phys. 9(200) 2319-2340.

    2. [2] J.W. Liu, H.W. Liang, S.H. Yu, Macroscopic-scale assembled nanowire thin films and their functionalities, Chem. Rev. 112(2012) 40-499.

    3. [3] J. Borges, J.. Mano, Molecular interactions driving the layer-by-layer assembly of multilayers, Chem. Rev. 114(2014) 8883-8942.

    4. [4] J.J. Richardson, M. Björnmalm,. Caruso, echnology-driven layer-by-layer assembly of nanofilms, Science 348(2015)6233.

    5. [5] Y. iao, L. Shaw, Z.N. Bao, S.C.B. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films, Energy Environ. Sci. (2014) 2145-2159.

    6. [6] E. Poverenov, M. Li, A. Bitler, M. Bendikov, Major effect of electropolymerization solvent on morphology and electrochromic properties of PEO films, Chem. Mater. 22(2010) 4019-4025.

    7. [7] A. Patra, M. Bendikov, Polyselenophenes, J. Mater. Chem. 20(2010) 422-433.

    8. [8] P.M. Beaujuge, J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices, Chem. Rev. 110(2010) 268-320.

    9. [9] E.J.W. List, R. Guentner, P. Scanducci de reitas, U. Scherf, he effect of keto defect sites on the emission properties of polyfluorene-type materials, Adv. Mater. 14(2002) 34-38.

    10. [10] A.L. yer, M.R. Craig, J.E. Babiarz, K. Kiyak, J.R. Reynolds, Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes, Macromolecules 43(2010) 4460-446.

    11. [11] A. Patra, Y.H. Wijsboom, S.S. Zade, et al., Poly(3,4-ethylenedioxyselenophene), J. Am. Chem. Soc. 130(2008) 634-636.

    12. [12] P. Manisankar, C. Vedhi, G. Selvanathan, R.M. Somasundaram, Electrochemical and electrochromic behavior of novel poly(aniline-co-4,40-diaminodiphenyl sulfone), Chem. Mater. 1(2005) 122-12.

    13. [13] C. Pozo-Gonzalo, M. Salsamendi, J.A. Pomposo, et al., nfluence of the introduction of short alkyl chains in poly(2-(2-thienyl)-1H-pyrrole) on its electrochromic behavior, Macromolecules 41(2008) 6886-6894.

    14. [14] G. Rydzek, Q.M. Ji, M. Li, et al., Electrochemical nanoarchitectonics and layer-bylayer assembly:from basics to future, Nano oday 10(2015) 138-16.

    15. [15] M. Li, S. shihara, M. Akada, et al., Electrochemical-coupling layer-by-layer (ECC-LbL) assembly, J. Am. Chem. Soc. 133(2011) 348-351.

    16. [16] M. Li, J. Zhang, H.J. Nie, et al., n situ switching layer-by-layer assembly:one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization, Chem. Commun. 49(2013) 689-6881.

    17. [1] Y.X. Gao, J. Qi, J. Zhang, et al., abrication of both the photoactive layer and the electrode by electrochemical assembly:towards a fully solution-processable device, Chem. Commun. 50(2014) 10448-10451.

    18. [18] J. Zhang, J. Qi, S.S. Kang, H.Z. Sun, M. Li, Hierarchical manipulation of uniform multi-nanoparticles by electrochemical coupling assembly, J. Mater. Chem. C3(2015) 5214-5219.

    19. [19] L. Echegoyen, L.E. Echegoyen, Electrochemistry of fullerenes and their derivatives, Acc. Chem. Res. 31(1998) 593-601.

    20. [20] (a) A.. Hebard, M.J. Rosseinsky, R.C. Haddon, et al., Superconductivity at 18 K in potassium-doped C60, Nature 350(1991) 600-601; (b) P. Grant, Superconductivity:up on the C60 elevator, Nature 413(2001) 264-265; (c) E. agotto, he race to beat the cuprates, Science 293(2001) 2410-2411.

    21. [21] T. Hasobe, H. mahori, P.V. Kamat, et al., Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles, J. Am. Chem. Soc. 12(2005) 1216-1228.

    22. [22] F. D'Souza, O. to, Photosensitized electron transfer processes of nanocarbons applicable to solar cells, Chem. Soc. Rev. 41(2012) 86-96.

    23. [23] Y. Shin, X. Lin, eliberate charge conjugation symmetry breaking for p-conjugated electron acceptor design, J. Phys. Chem. C119(2015) 12808-12814.

    24. [24] Y.J. He, H.Y. Chen, J.H. Hou, Y.. Li, ndene-C60bisadduct:anew acceptor for high-performance polymer solar cells, J. Am. Chem. Soc. 132(2010) 13-1382.

    25. [25] M. Li, S. shihara, K. Ohkubo, et al., Electrochemical synthesis of transparent, amorphous, C60-rich, photoactive, and low-doped film with an interconnected structure, Small 9(2013) 2064-2068.

    26. [26] C. Gu, Z.B. Zhang, S.H. Sun, et al., n situ electrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics, Adv. Mater. 24(2012) 52-531.

    27. [27] T. eng, B. Xiao, Y. Lv, et al., omain-like ultra-thin layers deposited electrochemically from carbazole-functionalized perylene bisimides for electron collection in inverted photovoltaic cells, Chem. Commun. 49(2013) 6283-6285.

    28. [28] J. Qi, Y.X. Gao, X.K. Zhou, et al., Significant enhancement of the detectivity of polymer photodetectors by using electrochemically deposited interfacial layers of crosslinked polycarbazole and carbazole-tethered gold nanoparticles, Adv. Mater. nterfaces 2(2015)[8] 140045.

    29. [29] Y. Lv, L. Yao, C. Gu, et al., Electroactive self-assembled monolayers for enhanced efficiency and stability of electropolymerized luminescent films and devices, Adv. unct. Mater. 21(2011) 2896-2900.

    30. [30] C. Gu, Y.C. Chen, Z.B. Zhang, et al., Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics, Adv. Mater. 25(2013) 3443-3448.

    31. [31] C. Gu, Y.C. Chen, Z.B. Zhang, et al., Achieving high efficiency of PB-based polymer solar cells via integrated optimization of both anode and cathode interlayers, Adv. Energy Mater. 4(2014), http://dx.doi.org/10.1002/aenm.2013011.

    32. [32] K.R.J. homas, J.. Lin, Y.. ao, C.W. Ko, Light-emitting carbazole derivatives:potential electroluminescent materials, J. Am. Chem. Soc. 123(2001) 9404-9411.

    33. [33] C.J. Xia, R.C. Advincula, A. Baba, W. Knoll, Electrochemical patterning of a polyfluorene precursor polymer from a microcontact printed (mCP) monolayer, Chem. Mater. 16(2004) 2852-2856.

    34. [34] M. Li, S. ang,.Z. Shen, et al., Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes, Chem. Commun. (2006) 3393-3395.

    35. [35] M. Li, S. ang,.Z. Shen, et al., Electrochemically deposited organic luminescent films:the effects of deposition parameters on morphologies and luminescent efficiency of films, J. Phys. Chem.[9] B 110(2006) 184-189.

    36. [36] M. Li, S. ang,.Z. Shen, et al., he counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films, J. Electrochem. Soc. 155(2008) H28-H291.

    37. [37] S. Tang, M.R. Liu, P. Lu, et al., A molecular glass for deep-blue organic lightemitting diodes comprising a 9,90-spirobifluorene core and peripheral carbazole groups, Adv. unct. Mater. 1(200) 2869-28.

    38. [38] C. Gu,. ei, M. Zhang, et al., Electrochemical polymerization films for highly efficient electroluminescent devices and RGB color pixel, Electrochem. Commun. 12(2010) 553-556.

    39. [39] C. Gu,. ei, Y. Lv, et al., Color-stable white electroluminescence based on a crosslinked network film prepared by electrochemical copolymerization, Adv. Mater. 22(2010) 202-205.

    40. [40] C. Gu,. ei, L. Yao, et al., Multilayer polymer stacking by in situ electrochemical polymerization for color-stable white electroluminescence, Adv. Mater. 23(2011) 52-530.

    41. [41] M. Li, S. ang,. Lu, et al., Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes, Semicond. Sci. echnol. 22(200) 855-858.

    42. [42] H.R. Nie, H.W. Ma, M. Zhang, Y.J. Zhong, A novel electropolymerized fluorescent film probe for N based on electro-active conjugated copolymer, alanta 144(2015) 1111-1115.

    43. [43] H.R. Nie, Y. Lv, L. Yao, et al., luorescence detection of trace N by novel crosslinking electropolymerized films both in vapor and aqueous medium, J. Hazard. Mater. 264(2014) 44-480.

    44. [44] P. Li, C.Y. Ji, H.W. Ma, M. Zhang, Y.. Cheng, evelopment of fluorescent film sensors based on electropolymerization for iron(III) ion detection, Chemistry 20(2014) 541-545.

    45. [45] C. Gu, N. Huang, J. Gao, et al., Controlled synthesis of conjugated microporous polymer films:versatile platforms for highly sensitive and label-free chemo- and biosensing, Angew. Chem. nt. Ed. Engl. 53(2014) 4850-4855.

    46. [46] C. Gu, N. Huang, Y. Wu, H. Xu,.L. Jiang, esign of highly photofunctional porous polymer films with controlled thickness and prominent microporosity, Angew. Chem. nt. Ed. Engl. 54(2015) 11540-11544.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  778
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2016-02-10
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-01-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章