Citation: Jian Zhang, Shu-Sen Kang, Zhe Zhang, Mao Li. Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles[J]. Chinese Chemical Letters, 2016, 27(4): 487-491.
Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles
English
Multiscale and multicomponent layer by layer assembly of optical thin films triggered by electrochemical coupling reactions of N-alkylcarbazoles
-
Key words:
- Layer-by-layer assembly
- / Carbazole
- / Electropolymerization
- / Optical films
- / Devices
-
-
[1] K. Ariga, J.P. Hill, Q.M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application, Phys. Chem. Chem. Phys. 9(200) 2319-2340.
-
[2] J.W. Liu, H.W. Liang, S.H. Yu, Macroscopic-scale assembled nanowire thin films and their functionalities, Chem. Rev. 112(2012) 40-499.
-
[3] J. Borges, J.. Mano, Molecular interactions driving the layer-by-layer assembly of multilayers, Chem. Rev. 114(2014) 8883-8942.
-
[4] J.J. Richardson, M. Björnmalm,. Caruso, echnology-driven layer-by-layer assembly of nanofilms, Science 348(2015)6233.
-
[5] Y. iao, L. Shaw, Z.N. Bao, S.C.B. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films, Energy Environ. Sci. (2014) 2145-2159.
-
[6] E. Poverenov, M. Li, A. Bitler, M. Bendikov, Major effect of electropolymerization solvent on morphology and electrochromic properties of PEO films, Chem. Mater. 22(2010) 4019-4025.
-
[7] A. Patra, M. Bendikov, Polyselenophenes, J. Mater. Chem. 20(2010) 422-433.
-
[8] P.M. Beaujuge, J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices, Chem. Rev. 110(2010) 268-320.
-
[9] E.J.W. List, R. Guentner, P. Scanducci de reitas, U. Scherf, he effect of keto defect sites on the emission properties of polyfluorene-type materials, Adv. Mater. 14(2002) 34-38.
-
[10] A.L. yer, M.R. Craig, J.E. Babiarz, K. Kiyak, J.R. Reynolds, Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes, Macromolecules 43(2010) 4460-446.
-
[11] A. Patra, Y.H. Wijsboom, S.S. Zade, et al., Poly(3,4-ethylenedioxyselenophene), J. Am. Chem. Soc. 130(2008) 634-636.
-
[12] P. Manisankar, C. Vedhi, G. Selvanathan, R.M. Somasundaram, Electrochemical and electrochromic behavior of novel poly(aniline-co-4,40-diaminodiphenyl sulfone), Chem. Mater. 1(2005) 122-12.
-
[13] C. Pozo-Gonzalo, M. Salsamendi, J.A. Pomposo, et al., nfluence of the introduction of short alkyl chains in poly(2-(2-thienyl)-1H-pyrrole) on its electrochromic behavior, Macromolecules 41(2008) 6886-6894.
-
[14] G. Rydzek, Q.M. Ji, M. Li, et al., Electrochemical nanoarchitectonics and layer-bylayer assembly:from basics to future, Nano oday 10(2015) 138-16.
-
[15] M. Li, S. shihara, M. Akada, et al., Electrochemical-coupling layer-by-layer (ECC-LbL) assembly, J. Am. Chem. Soc. 133(2011) 348-351.
-
[16] M. Li, J. Zhang, H.J. Nie, et al., n situ switching layer-by-layer assembly:one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization, Chem. Commun. 49(2013) 689-6881.
-
[1] Y.X. Gao, J. Qi, J. Zhang, et al., abrication of both the photoactive layer and the electrode by electrochemical assembly:towards a fully solution-processable device, Chem. Commun. 50(2014) 10448-10451.
-
[18] J. Zhang, J. Qi, S.S. Kang, H.Z. Sun, M. Li, Hierarchical manipulation of uniform multi-nanoparticles by electrochemical coupling assembly, J. Mater. Chem. C3(2015) 5214-5219.
-
[19] L. Echegoyen, L.E. Echegoyen, Electrochemistry of fullerenes and their derivatives, Acc. Chem. Res. 31(1998) 593-601.
-
[20] (a) A.. Hebard, M.J. Rosseinsky, R.C. Haddon, et al., Superconductivity at 18 K in potassium-doped C60, Nature 350(1991) 600-601; (b) P. Grant, Superconductivity:up on the C60 elevator, Nature 413(2001) 264-265; (c) E. agotto, he race to beat the cuprates, Science 293(2001) 2410-2411.
-
[21] T. Hasobe, H. mahori, P.V. Kamat, et al., Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles, J. Am. Chem. Soc. 12(2005) 1216-1228.
-
[22] F. D'Souza, O. to, Photosensitized electron transfer processes of nanocarbons applicable to solar cells, Chem. Soc. Rev. 41(2012) 86-96.
-
[23] Y. Shin, X. Lin, eliberate charge conjugation symmetry breaking for p-conjugated electron acceptor design, J. Phys. Chem. C119(2015) 12808-12814.
-
[24] Y.J. He, H.Y. Chen, J.H. Hou, Y.. Li, ndene-C60bisadduct:anew acceptor for high-performance polymer solar cells, J. Am. Chem. Soc. 132(2010) 13-1382.
-
[25] M. Li, S. shihara, K. Ohkubo, et al., Electrochemical synthesis of transparent, amorphous, C60-rich, photoactive, and low-doped film with an interconnected structure, Small 9(2013) 2064-2068.
-
[26] C. Gu, Z.B. Zhang, S.H. Sun, et al., n situ electrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics, Adv. Mater. 24(2012) 52-531.
-
[27] T. eng, B. Xiao, Y. Lv, et al., omain-like ultra-thin layers deposited electrochemically from carbazole-functionalized perylene bisimides for electron collection in inverted photovoltaic cells, Chem. Commun. 49(2013) 6283-6285.
-
[28] J. Qi, Y.X. Gao, X.K. Zhou, et al., Significant enhancement of the detectivity of polymer photodetectors by using electrochemically deposited interfacial layers of crosslinked polycarbazole and carbazole-tethered gold nanoparticles, Adv. Mater. nterfaces 2(2015)[8] 140045.
-
[29] Y. Lv, L. Yao, C. Gu, et al., Electroactive self-assembled monolayers for enhanced efficiency and stability of electropolymerized luminescent films and devices, Adv. unct. Mater. 21(2011) 2896-2900.
-
[30] C. Gu, Y.C. Chen, Z.B. Zhang, et al., Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics, Adv. Mater. 25(2013) 3443-3448.
-
[31] C. Gu, Y.C. Chen, Z.B. Zhang, et al., Achieving high efficiency of PB-based polymer solar cells via integrated optimization of both anode and cathode interlayers, Adv. Energy Mater. 4(2014), http://dx.doi.org/10.1002/aenm.2013011.
-
[32] K.R.J. homas, J.. Lin, Y.. ao, C.W. Ko, Light-emitting carbazole derivatives:potential electroluminescent materials, J. Am. Chem. Soc. 123(2001) 9404-9411.
-
[33] C.J. Xia, R.C. Advincula, A. Baba, W. Knoll, Electrochemical patterning of a polyfluorene precursor polymer from a microcontact printed (mCP) monolayer, Chem. Mater. 16(2004) 2852-2856.
-
[34] M. Li, S. ang,.Z. Shen, et al., Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes, Chem. Commun. (2006) 3393-3395.
-
[35] M. Li, S. ang,.Z. Shen, et al., Electrochemically deposited organic luminescent films:the effects of deposition parameters on morphologies and luminescent efficiency of films, J. Phys. Chem.[9] B 110(2006) 184-189.
-
[36] M. Li, S. ang,.Z. Shen, et al., he counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films, J. Electrochem. Soc. 155(2008) H28-H291.
-
[37] S. Tang, M.R. Liu, P. Lu, et al., A molecular glass for deep-blue organic lightemitting diodes comprising a 9,90-spirobifluorene core and peripheral carbazole groups, Adv. unct. Mater. 1(200) 2869-28.
-
[38] C. Gu,. ei, M. Zhang, et al., Electrochemical polymerization films for highly efficient electroluminescent devices and RGB color pixel, Electrochem. Commun. 12(2010) 553-556.
-
[39] C. Gu,. ei, Y. Lv, et al., Color-stable white electroluminescence based on a crosslinked network film prepared by electrochemical copolymerization, Adv. Mater. 22(2010) 202-205.
-
[40] C. Gu,. ei, L. Yao, et al., Multilayer polymer stacking by in situ electrochemical polymerization for color-stable white electroluminescence, Adv. Mater. 23(2011) 52-530.
-
[41] M. Li, S. ang,. Lu, et al., Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes, Semicond. Sci. echnol. 22(200) 855-858.
-
[42] H.R. Nie, H.W. Ma, M. Zhang, Y.J. Zhong, A novel electropolymerized fluorescent film probe for N based on electro-active conjugated copolymer, alanta 144(2015) 1111-1115.
-
[43] H.R. Nie, Y. Lv, L. Yao, et al., luorescence detection of trace N by novel crosslinking electropolymerized films both in vapor and aqueous medium, J. Hazard. Mater. 264(2014) 44-480.
-
[44] P. Li, C.Y. Ji, H.W. Ma, M. Zhang, Y.. Cheng, evelopment of fluorescent film sensors based on electropolymerization for iron(III) ion detection, Chemistry 20(2014) 541-545.
-
[45] C. Gu, N. Huang, J. Gao, et al., Controlled synthesis of conjugated microporous polymer films:versatile platforms for highly sensitive and label-free chemo- and biosensing, Angew. Chem. nt. Ed. Engl. 53(2014) 4850-4855.
-
[46] C. Gu, N. Huang, Y. Wu, H. Xu,.L. Jiang, esign of highly photofunctional porous polymer films with controlled thickness and prominent microporosity, Angew. Chem. nt. Ed. Engl. 54(2015) 11540-11544.
-
计量
- PDF下载量: 0
- 文章访问数: 778
- HTML全文浏览量: 28