典型醇类物质超临界水氧化反应途径研究

陈忠 王光伟 殷逢俊 杨舒 陈鸿珍 徐愿坚

引用本文: 陈忠, 王光伟, 殷逢俊, 杨舒, 陈鸿珍, 徐愿坚. 典型醇类物质超临界水氧化反应途径研究[J]. 燃料化学学报, 2014, 42(3): 343-349. shu
Citation:  CHEN Zhong, WANG Guang-wei, YIN Feng-jun, YANG Shu, CHEN Hong-zhen, XU Yuan-jian. Reaction pathways in the supercritical water oxidation of typical alcohols[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 343-349. shu

典型醇类物质超临界水氧化反应途径研究

    通讯作者: 徐愿坚(1973-),男,研究员,主要研究方向为废弃物超临界水氧化处理。Tel:023-68935819,E-mail:xuyuanjian@cigit.ac.cn
  • 基金项目:

    重庆市科技攻关项目(cstc2011ggC20014,cstc2012gg-sfgc20001)。 (cstc2011ggC20014,cstc2012gg-sfgc20001)

摘要: 采用自主设计的连续流动气封壁超临界水氧化反应装置,研究了典型醇类物质甲醇、乙醇和异丙醇在超临界水中氧化的反应途径,并归纳了醇类物质超临界水氧化反应的规律及特点。研究结果表明,甲醇超临界水氧化反应的主要中间产物为甲醛,同样条件下转化率较乙醇和异丙醇低;乙醇和异丙醇超临界水氧化反应的主要中间产物为丙酮、乙酸、乙醛和甲醇等。三种醇超临界水氧化过程中均涉及到大量活性自由基的相互作用,表现为脱氢、裂解和聚合等反应形式;产物包括碳链增长、不变、降低三种类型。总体来看,醇类物质超临界水氧化反应的趋势是向碳链降低的方向进行,即通过一系列中间产物最后生成CO2和水。

English

  • 
    1. [1] PORTELA J R, NEBOT E, DE LA OSSA E M. Generalized kinetics models for supercritical water oxidation of cutting oil wastes[J]. J Supercrit Fluids, 2001, 21(2): 135-145.[1] PORTELA J R, NEBOT E, DE LA OSSA E M. Generalized kinetics models for supercritical water oxidation of cutting oil wastes[J]. J Supercrit Fluids, 2001, 21(2): 135-145.

    2. [2] PÉREZ I V, ROGAK S, BRANION R. Supercritical water oxidation of phenol and 2, 4-dinitrophenol[J]. J Supercrit Fluids, 2004, 30(1): 71-87.[2] PÉREZ I V, ROGAK S, BRANION R. Supercritical water oxidation of phenol and 2, 4-dinitrophenol[J]. J Supercrit Fluids, 2004, 30(1): 71-87.

    3. [3] CUI B C, CUI F Y, JING G L, XU S L, HUO W J, LIU S Z. Oxidation of oily sludge in supercritical water[J]. J Hazard Mater, 2009, 165(1/3): 511-517.[3] CUI B C, CUI F Y, JING G L, XU S L, HUO W J, LIU S Z. Oxidation of oily sludge in supercritical water[J]. J Hazard Mater, 2009, 165(1/3): 511-517.

    4. [4] MARULANDA V, BOLAÑOS G. Supercritical water oxidation of a heavily PCB contaminated mineral transformer oil: Laboratory-scale data and economic assessment[J]. J Supercrit Fluid, 2010, 54(2): 258-265.[4] MARULANDA V, BOLAÑOS G. Supercritical water oxidation of a heavily PCB contaminated mineral transformer oil: Laboratory-scale data and economic assessment[J]. J Supercrit Fluid, 2010, 54(2): 258-265.

    5. [5] VOGEL F, BLANCHARD J L D, MARRONE P A, RICE S F, WEBLEY P A, PETERS W A, SMITH K A, TESTER J W. Critical review of kinetic data for the oxidation of methanol in supercritical water[J]. J Supercrit Fluid, 2005, 34(3): 249-286.[5] VOGEL F, BLANCHARD J L D, MARRONE P A, RICE S F, WEBLEY P A, PETERS W A, SMITH K A, TESTER J W. Critical review of kinetic data for the oxidation of methanol in supercritical water[J]. J Supercrit Fluid, 2005, 34(3): 249-286.

    6. [6] BRUNNER G. Near and supercritical water. Part 2: Oxidative processes[J]. J Supercrit Fluids, 2009, 47(3): 382-390.[6] BRUNNER G. Near and supercritical water. Part 2: Oxidative processes[J]. J Supercrit Fluids, 2009, 47(3): 382-390.

    7. [7] SAVAGE P E, ROVIRA J, STYLSKI N, MARTINO C J. Oxidation kinetics for methane/methanol mixtures in supercritical water[J]. J Supercrit Fluids, 2000, 17(2): 155-170.[7] SAVAGE P E, ROVIRA J, STYLSKI N, MARTINO C J. Oxidation kinetics for methane/methanol mixtures in supercritical water[J]. J Supercrit Fluids, 2000, 17(2): 155-170.

    8. [8] SAVAGE P E, YU J L, STYLSKI N, BROCK E E. Kinetics and mechanism of methane oxidation in supercritical water[J]. J Supercrit Fluids, 1998, 12(2): 141-153.[8] SAVAGE P E, YU J L, STYLSKI N, BROCK E E. Kinetics and mechanism of methane oxidation in supercritical water[J]. J Supercrit Fluids, 1998, 12(2): 141-153.

    9. [9] ARMBRUSTER U, MARTIN A, KREPEL A. Partial oxidation of propane in sub-and supercritical water[J]. J Supercrit Fluids, 2001, 21(3): 233-243.[9] ARMBRUSTER U, MARTIN A, KREPEL A. Partial oxidation of propane in sub-and supercritical water[J]. J Supercrit Fluids, 2001, 21(3): 233-243.

    10. [10] MAHARREY S P, MILLER D R. A direct sampling mass spectrometer investigation of oxidation mechanisms for acetic acid in supercritical water[J]. J Phys Chem A, 2001, 105(24): 5860-5867.[10] MAHARREY S P, MILLER D R. A direct sampling mass spectrometer investigation of oxidation mechanisms for acetic acid in supercritical water[J]. J Phys Chem A, 2001, 105(24): 5860-5867.

    11. [11] WEBLEY P A, TESTER J W. Fundamental kinetics of methane oxidation in supercritical water[J]. Energy Fuels, 1991, 5(3): 411-419.[11] WEBLEY P A, TESTER J W. Fundamental kinetics of methane oxidation in supercritical water[J]. Energy Fuels, 1991, 5(3): 411-419.

    12. [12] HIROSAKA K, FUKAYAMA M, WAKAMATSU K, ISHIDA Y, KITAGAWA K, HASEGAWA T. Combustion of ethanol by hydrothermal oxidation[J]. Pro combust Inst. 2007, 31(2): 3361-3367.[12] HIROSAKA K, FUKAYAMA M, WAKAMATSU K, ISHIDA Y, KITAGAWA K, HASEGAWA T. Combustion of ethanol by hydrothermal oxidation[J]. Pro combust Inst. 2007, 31(2): 3361-3367.

    13. [13] SCHANZENBÄCHER J, YAYLOR J D, TESYER J W. Ethanol oxidation and hydrolysis rates in supercritical water[J]. J Supercrit Fluids, 2002, 22(2): 139-147.[13] SCHANZENBÄCHER J, YAYLOR J D, TESYER J W. Ethanol oxidation and hydrolysis rates in supercritical water[J]. J Supercrit Fluids, 2002, 22(2): 139-147.

    14. [14] HUNTER T B, RICE S F, HANUSH R G. Raman spectroscopic measurement of oxidation in supercritical water. 2. Conversion of isopropyl alcohol to acetone[J]. Ind Eng Chem Res, 1996, 35(11): 3984-3990.[14] HUNTER T B, RICE S F, HANUSH R G. Raman spectroscopic measurement of oxidation in supercritical water. 2. Conversion of isopropyl alcohol to acetone[J]. Ind Eng Chem Res, 1996, 35(11): 3984-3990.

    15. [15] ANTAL Jr M J A, CARLSSON M, XU X, ANDERSON D G M. Mechanism and kinetics of the acid-catalyzed dehydration of 1-and 2-propanol in hot compressed liquid water[J]. Ind Eng Chem Res, 1998, 37(10): 3820-3829.[15] ANTAL Jr M J A, CARLSSON M, XU X, ANDERSON D G M. Mechanism and kinetics of the acid-catalyzed dehydration of 1-and 2-propanol in hot compressed liquid water[J]. Ind Eng Chem Res, 1998, 37(10): 3820-3829.

    16. [16] YANG S, WANG G, XU Y. New design of supercritical water oxidation reactor for sewage sludge treatment[J]. Adv Mater Res, 2013, 774-776: 212-215.[16] YANG S, WANG G, XU Y. New design of supercritical water oxidation reactor for sewage sludge treatment[J]. Adv Mater Res, 2013, 774-776: 212-215.

    17. [17] BROCK E E, SAVAGE P E. Detailed chemical-kinetics model for supercritical water oxidation of C-1 compounds and H2[J]. AIChE J, 1995, 41(8): 1874-1888.[17] BROCK E E, SAVAGE P E. Detailed chemical-kinetics model for supercritical water oxidation of C-1 compounds and H2[J]. AIChE J, 1995, 41(8): 1874-1888.

    18. [18] BROCK E E, OSHIMA Y, SAVAGE P E, BARKER J R. Kinetics and mechanism of methanol oxidation in supercritical water[J]. J Phys Chem, 1996, 100(39): 15834-15842.[18] BROCK E E, OSHIMA Y, SAVAGE P E, BARKER J R. Kinetics and mechanism of methanol oxidation in supercritical water[J]. J Phys Chem, 1996, 100(39): 15834-15842.

    19. [19] BROCK E E, SAVAGE P E, BARKER J R. A reduced mechanism for methanol oxidation in supercritical water[J]. Chem Eng Sci, 1998, 53(5): 857-867.[19] BROCK E E, SAVAGE P E, BARKER J R. A reduced mechanism for methanol oxidation in supercritical water[J]. Chem Eng Sci, 1998, 53(5): 857-867.

    20. [20] RICE S F, HUNTER T B, RYDÉN Å C, HANUSH R G. Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde[J]. Ind Eng Chem Res, 1996, 35(7): 2161-2171.[20] RICE S F, HUNTER T B, RYDÉN Å C, HANUSH R G. Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde[J]. Ind Eng Chem Res, 1996, 35(7): 2161-2171.

    21. [21] HAYASHI R, ONISHI M, SUGIYAMA M, KODA S, OSHIMA Y. Kinetic analysis on alcohol concentration and mixture effect in supercritical water oxidation of methanol and ethanol by elementary reaction model[J]. J Supercrit Fluids, 2007, 40(1): 74-83.[21] HAYASHI R, ONISHI M, SUGIYAMA M, KODA S, OSHIMA Y. Kinetic analysis on alcohol concentration and mixture effect in supercritical water oxidation of methanol and ethanol by elementary reaction model[J]. J Supercrit Fluids, 2007, 40(1): 74-83.

    22. [22] RICE S F, CROISET E. Oxidation of simple alcohols in supercritical water. Ⅲ. Formation of intermediates from ethanol[J]. Ind Eng Chem Res, 2001, 40(1): 86-93.[22] RICE S F, CROISET E. Oxidation of simple alcohols in supercritical water. Ⅲ. Formation of intermediates from ethanol[J]. Ind Eng Chem Res, 2001, 40(1): 86-93.

    23. [23] SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chem Rev, 1999, 99(2): 603-621.[23] SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chem Rev, 1999, 99(2): 603-621.

    24. [24] MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation[J]. Int J Chem Kinet, 1999, 31(3): 183-220.[24] MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation[J]. Int J Chem Kinet, 1999, 31(3): 183-220.

    25. [25] HIROSAKA K, KOIDO K, FUKAYAMA M, OURYOJI K, HASEGAWA T. Experimental and numerical study of ethanol oxidation in sub-critical water[J]. J Supercrit Fluids, 2008, 44(3): 347-355.[25] HIROSAKA K, KOIDO K, FUKAYAMA M, OURYOJI K, HASEGAWA T. Experimental and numerical study of ethanol oxidation in sub-critical water[J]. J Supercrit Fluids, 2008, 44(3): 347-355.

    26. [26] GOTO M, NADA T, OGATA A, KODAMA A, HIROSE T. Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses[J]. J Supercrit Fluids, 1998, 13(1/3): 277-282.[26] GOTO M, NADA T, OGATA A, KODAMA A, HIROSE T. Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses[J]. J Supercrit Fluids, 1998, 13(1/3): 277-282.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  547
  • HTML全文浏览量:  34
文章相关
  • 收稿日期:  2013-08-23
  • 网络出版日期:  2013-11-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章