油页岩的13C-NMR特征及FLASHCHAIN热解模拟研究

王擎 任立国 王锐 柏静儒 王浩添 闫宇赫

引用本文: 王擎, 任立国, 王锐, 柏静儒, 王浩添, 闫宇赫. 油页岩的13C-NMR特征及FLASHCHAIN热解模拟研究[J]. 燃料化学学报, 2014, 42(3): 303-308. shu
Citation:  WANG Qing, REN Li-guo, WANG Rui, BAI Jing-ru, WANG Hao-tian, YAN Yu-he. Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 303-308. shu

油页岩的13C-NMR特征及FLASHCHAIN热解模拟研究

    通讯作者: 王擎(1964-),男,博士,教授,E-mail:rlx888@126.com
  • 基金项目:

    国家自然科学基金(51276034)。 (51276034)

摘要: 采用固体 13C-NMR核磁共振技术表征了甘肃窑街矿区油页岩的碳骨架结构,分析并计算了油母质团簇化学结构参数,包括团簇平均碳原子数、芳碳原子数、脂碳原子数及芳环数。在热重红外分析仪(TG-FTIR)上进行了油页岩的热解实验,得到了热解产物的生成规律。结合样品的团簇化学结构参数,采用基于油页岩结构的FLASHCHAIN模型模拟其热解产物的生成过程;模拟结果与TG-FITR实验数据符合较好,印证了模型预测的合理性。

English

  • 
    1. [1] 侯祥麟. 中国页岩油工业[M]. 北京: 石油工业出版社, 1984: 5-10. (HOU Xiang-lin. China shale oil industry[M]. Beijing: Petroleum Industry Press, 1984: 5-10.)[1] 侯祥麟. 中国页岩油工业[M]. 北京: 石油工业出版社, 1984: 5-10. (HOU Xiang-lin. China shale oil industry[M]. Beijing: Petroleum Industry Press, 1984: 5-10.)

    2. [2] QIAN J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.[2] QIAN J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.

    3. [3] 钱家麟, 尹亮. 油页岩-石油的补充能源[M]. 北京: 中国石化出版社, 2008: 1-3. (QIAN Jia-lin, YIN Liang. Oil shale-The complementary energy of petroleum[M]. Beijing: China Petrochemical Press, 2008: 1-3.)[3] 钱家麟, 尹亮. 油页岩-石油的补充能源[M]. 北京: 中国石化出版社, 2008: 1-3. (QIAN Jia-lin, YIN Liang. Oil shale-The complementary energy of petroleum[M]. Beijing: China Petrochemical Press, 2008: 1-3.)

    4. [4] MAO K, KENNEDY G J, ALTHAUS S M, PRUSKI M. Determination of the average aromatic cluster size of fossil fuels by solid-state NMR at high magnetic field[J]. Energy Fuels, 2013, 27(2): 760-763.[4] MAO K, KENNEDY G J, ALTHAUS S M, PRUSKI M. Determination of the average aromatic cluster size of fossil fuels by solid-state NMR at high magnetic field[J]. Energy Fuels, 2013, 27(2): 760-763.

    5. [5] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.[5] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.

    6. [6] MIKNIS F P, LINDNER A W, GANNON A J, DAVIS M F, MACIEL G E. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3/4): 239-248.[6] MIKNIS F P, LINDNER A W, GANNON A J, DAVIS M F, MACIEL G E. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3/4): 239-248.

    7. [7] 秦匡宗, 劳永新. 茂名和抚顺油页岩组成结构的研究I. 有机质的芳碳结构[J]. 燃料化学学报, 1985, 13(2): 133-140. (QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I: The structural components of the organic matter[J]. Journal of Fuel Chemistry and Technology, 1985, 13(2): 133-140.)[7] 秦匡宗, 劳永新. 茂名和抚顺油页岩组成结构的研究I. 有机质的芳碳结构[J]. 燃料化学学报, 1985, 13(2): 133-140. (QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I: The structural components of the organic matter[J]. Journal of Fuel Chemistry and Technology, 1985, 13(2): 133-140.)

    8. [8] NIKSA S, KERSTEIN A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation[J]. Energy Fuels, 1991, 5(5): 647-665.[8] NIKSA S, KERSTEIN A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation[J]. Energy Fuels, 1991, 5(5): 647-665.

    9. [9] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 2. Impact of operating conditions[J]. Energy Fuels, 1991, 5(5): 665-673.[9] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 2. Impact of operating conditions[J]. Energy Fuels, 1991, 5(5): 665-673.

    10. [10] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 3. Modeling the behavior of various coals[J]. Energy Fuels, 1991, 5(5): 673-683.[10] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 3. Modeling the behavior of various coals[J]. Energy Fuels, 1991, 5(5): 673-683.

    11. [11] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analyses alone[J]. Energy Fuels, 1994, 8(3): 659-670.[11] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analyses alone[J]. Energy Fuels, 1994, 8(3): 659-670.

    12. [12] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 5. Interpreting rates of devolatilization for various coal types and operating conditions[J]. Energy Fuels, 1994, 8(3): 671-679.[12] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 5. Interpreting rates of devolatilization for various coal types and operating conditions[J]. Energy Fuels, 1994, 8(3): 671-679.

    13. [13] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 6. Predicting the evolution of fuel nitrogen from various coals[J]. Energy Fuels, 1995, 9(3): 467-478.[13] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 6. Predicting the evolution of fuel nitrogen from various coals[J]. Energy Fuels, 1995, 9(3): 467-478.

    14. [14] NIKSA S. FLASHCHAIN theory for rapid coal de volatilization kinetics 7. Predicting the release of oxygen species from various coals[J]. Energy Fuels, 1996, 10(1): 173-187.[14] NIKSA S. FLASHCHAIN theory for rapid coal de volatilization kinetics 7. Predicting the release of oxygen species from various coals[J]. Energy Fuels, 1996, 10(1): 173-187.

    15. [15] NIKSA S, KERSTEIN A R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation[J]. Combust Flame, 1986, 66(2): 95-109.[15] NIKSA S, KERSTEIN A R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation[J]. Combust Flame, 1986, 66(2): 95-109.

    16. [16] NIKSA S. The distributed-energy chain model for rapid coal devolatilization kinetics part Ⅱ: Transient weight loss correlations[J]. Combust Flame, 1986, 66(2): 111-119.[16] NIKSA S. The distributed-energy chain model for rapid coal devolatilization kinetics part Ⅱ: Transient weight loss correlations[J]. Combust Flame, 1986, 66(2): 111-119.

    17. [17] NIKSA S, KERSTEIN A R. On the role of macromolecular configuration in rapid coal devolatilization[J]. Fuels, 1987, 66(10): 1389-1399.[17] NIKSA S, KERSTEIN A R. On the role of macromolecular configuration in rapid coal devolatilization[J]. Fuels, 1987, 66(10): 1389-1399.

    18. [18] NIKSA S. Modeling the devolatilization behavior of high volatile bituminous coals[J]. Symposium (International) on Combustion, 1989, 22(1): 105-114.[18] NIKSA S. Modeling the devolatilization behavior of high volatile bituminous coals[J]. Symposium (International) on Combustion, 1989, 22(1): 105-114.

    19. [19] NIKSA S. Rapid coal devolatilization as an model for equilibrium flash distillation[J]. AIChE J, 1988, 34(5): 790-802.[19] NIKSA S. Rapid coal devolatilization as an model for equilibrium flash distillation[J]. AIChE J, 1988, 34(5): 790-802.

    20. [20] 秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理-固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 69(1): 37-44. (QIN Kuang-zong, WU Xiao-ling. Fushun oil shale pyrolysis mechanism of hydrocarbon-The application of solid state 13C NMR[J]. Journal of Petroleum, 1990, 69(1): 37-44.)[20] 秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理-固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 69(1): 37-44. (QIN Kuang-zong, WU Xiao-ling. Fushun oil shale pyrolysis mechanism of hydrocarbon-The application of solid state 13C NMR[J]. Journal of Petroleum, 1990, 69(1): 37-44.)

    21. [21] AXELSON D E. Spinning sideband suppression and quantitative analysis in solid state 13C NMR of fossil fuels[J]. Fuel, 1987, 66(2): 195-199.[21] AXELSON D E. Spinning sideband suppression and quantitative analysis in solid state 13C NMR of fossil fuels[J]. Fuel, 1987, 66(2): 195-199.

    22. [22] 钱琳, 孙绍增, 王东, 郭浩然, 许焕焕, 孟建强, 秦裕琨. 两种褐煤的13C-NMR特征及CPD高温快速热解模拟研究[J]. 煤炭学报, 2013, 38(3): 455-460. (QIAN Lin, SUN Shao-zeng, WANG-Dong, GUO Hao-ran, XU Huan-huan, MENG Jian-qiang, QIN Yu-kun. The 13C-NMR measurements of two types of lignite and the CPD simulation of lignite rapid pyrolysis at high temperature[J]. Journal of China coal society, 2013, 38(3): 455-460.)[22] 钱琳, 孙绍增, 王东, 郭浩然, 许焕焕, 孟建强, 秦裕琨. 两种褐煤的13C-NMR特征及CPD高温快速热解模拟研究[J]. 煤炭学报, 2013, 38(3): 455-460. (QIAN Lin, SUN Shao-zeng, WANG-Dong, GUO Hao-ran, XU Huan-huan, MENG Jian-qiang, QIN Yu-kun. The 13C-NMR measurements of two types of lignite and the CPD simulation of lignite rapid pyrolysis at high temperature[J]. Journal of China coal society, 2013, 38(3): 455-460.)

    23. [23] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of argonne premium coals[J]. Energy Fuels, 1989, 3(2): 187-193.[23] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of argonne premium coals[J]. Energy Fuels, 1989, 3(2): 187-193.

    24. [24] XU W C, TOMITA A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuels, 1987, 66(5): 627-631.[24] XU W C, TOMITA A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuels, 1987, 66(5): 627-631.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  702
  • HTML全文浏览量:  40
文章相关
  • 收稿日期:  2013-09-17
  • 网络出版日期:  2013-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章