Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study

Qian-Tao Shi Wei Yan

Citation:  Qian-Tao Shi, Wei Yan. Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study[J]. Chinese Chemical Letters, 2015, 26(2): 200-204. doi: 10.1016/j.cclet.2014.12.009 shu

Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study

    通讯作者: Wei Yan,
  • 基金项目:

    This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020201) (No. XDB14020201)

    the National Basic Research Program of China (No. 2014CB441102) (No. 2014CB441102)

    the National Natural Science Foundation of China (No. 21477144) (No. 21477144)

摘要: Lanthanum modified materials have been widely used for the removal of hazardous anions. In this study, in situ ATR-FTIR and two-dimensional correlation analysis were employed to investigate the adsorption mechanism of arsenate (As(V)) on lanthanum-impregnated activated alumina (LAA). Our results showed that electrostatic interaction attracted As(V) anions to the LAA surface, and then As(V) could form monodentate configuration on the LAA surface at pH 5-9. The result of 2D-COS showed that two coexistent adsorbed As(V) species, H2AsO4- and HAsO4-2, were adsorbed on the LAA surface without specific sequence at different pH conditions, indicating a negligible role of the incorporated protons of As(V) on the adsorption affinity to LAA surface. The results of this study reveal insights into LAA surface complexes on the molecular scale and provide theoretical support to new metal oxides design for efficient arsenic removal.

English

  • 
    1. [1] Y. Meng, J.N. Wang, C. Cheng, X. Yang, A.M. Li, Preparation of new base-aluminumchloride-loaded fiber as adsorbent for fast removal of arsenic(V) from water, Chin. Chem. Lett. 23 (2012) 863-866.[1] Y. Meng, J.N. Wang, C. Cheng, X. Yang, A.M. Li, Preparation of new base-aluminumchloride-loaded fiber as adsorbent for fast removal of arsenic(V) from water, Chin. Chem. Lett. 23 (2012) 863-866.

    2. [2] G.H. Zhu, Z.M. Li, X.H. Chen, et al., Determination of trace arsenic(V) by catalytic solid substrate-room temperature phosphorescence quenching method, Chin. Chem. Lett. 18 (2007) 711-713.[2] G.H. Zhu, Z.M. Li, X.H. Chen, et al., Determination of trace arsenic(V) by catalytic solid substrate-room temperature phosphorescence quenching method, Chin. Chem. Lett. 18 (2007) 711-713.

    3. [3] X.L. Wu, X.L. Tan, S.T. Yang, et al., Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides, Water Res. 47 (2013) 4159-4168.[3] X.L. Wu, X.L. Tan, S.T. Yang, et al., Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides, Water Res. 47 (2013) 4159-4168.

    4. [4] S.A. Wasay, J. Haron, S. Tokunaga, Adsorption of fluoride, phosphate, and arsenate ions on lanthanum impregnated silica gel, Water Environ. Res 68 (1996) 295-300.[4] S.A. Wasay, J. Haron, S. Tokunaga, Adsorption of fluoride, phosphate, and arsenate ions on lanthanum impregnated silica gel, Water Environ. Res 68 (1996) 295-300.

    5. [5] Q.T. Shi, Y.Y. Huang, C.Y. Jing, Synthesis, characterization and application of lanthanum-impregnated activated alumina for F removal, J. Mater. Chem. A 1 (2013) 12797-12803.[5] Q.T. Shi, Y.Y. Huang, C.Y. Jing, Synthesis, characterization and application of lanthanum-impregnated activated alumina for F removal, J. Mater. Chem. A 1 (2013) 12797-12803.

    6. [6] W.Y. Huang, Y. Zhu, J.P. Tang, et al., Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal, J. Mater. Chem. A 2 (2014) 8839-8848.[6] W.Y. Huang, Y. Zhu, J.P. Tang, et al., Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal, J. Mater. Chem. A 2 (2014) 8839-8848.

    7. [7] M.R. Gandhi, S. Meenakshi, Preparation and characterization of La(III) encapsulated silica gel/chitosan composite and its metal uptake studies, J. Hazard. Mater. 203 (2012) 29-37.[7] M.R. Gandhi, S. Meenakshi, Preparation and characterization of La(III) encapsulated silica gel/chitosan composite and its metal uptake studies, J. Hazard. Mater. 203 (2012) 29-37.

    8. [8] F. Zaera, Probing liquid/solid interfaces at the molecular level, Chem. Rev. 112 (2012) 2920-2986.[8] F. Zaera, Probing liquid/solid interfaces at the molecular level, Chem. Rev. 112 (2012) 2920-2986.

    9. [9] E.J. Elzinga, R. Kretzschmar, In situ ATR-FTIR spectroscopic analysis of the coadsorption of orthophosphate and Cd(II) onto hematite, Geochim. Cosmochim. Acta 117 (2013) 53-64.[9] E.J. Elzinga, R. Kretzschmar, In situ ATR-FTIR spectroscopic analysis of the coadsorption of orthophosphate and Cd(II) onto hematite, Geochim. Cosmochim. Acta 117 (2013) 53-64.

    10. [10] I. Noda, Two-dimensional infrared-spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.[10] I. Noda, Two-dimensional infrared-spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.

    11. [11] I. Noda, Two-dimensional correlation spectroscopy-biannual survey, 2007-2009, J. Mol. Struct. 974 (2010) 3-24.[11] I. Noda, Two-dimensional correlation spectroscopy-biannual survey, 2007-2009, J. Mol. Struct. 974 (2010) 3-24.

    12. [12] W. Yan, J.F. Zhang, C.Y. Jing, Adsorption of enrofloxacin on montmorillonite: twodimensional correlation ATR/FTIR spectroscopy study, J. Colloid Interf. Sci. 390 (2013) 196-203.[12] W. Yan, J.F. Zhang, C.Y. Jing, Adsorption of enrofloxacin on montmorillonite: twodimensional correlation ATR/FTIR spectroscopy study, J. Colloid Interf. Sci. 390 (2013) 196-203.

    13. [13] Y.L. Yang, W. Yan, C.Y. Jing, Dynamic adsorption of catechol at the goethite/aqueous solution interface: a molecular-scale study, Langmuir 41 (2012) 14588-14597.[13] Y.L. Yang, W. Yan, C.Y. Jing, Dynamic adsorption of catechol at the goethite/aqueous solution interface: a molecular-scale study, Langmuir 41 (2012) 14588-14597.

    14. [14] M. Pena, X.G.Meng, G.P. Korfiatis, C.Y. Jing, Adsorptionmechanismof arsenic on nanocrystalline titanium dioxide, Environ. Sci. Technol. 40 (2006) 1257-1262.[14] M. Pena, X.G.Meng, G.P. Korfiatis, C.Y. Jing, Adsorptionmechanismof arsenic on nanocrystalline titanium dioxide, Environ. Sci. Technol. 40 (2006) 1257-1262.

    15. [15] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces, Geochim. Cosmochim. Acta 62 (1998) 3285-3300.[15] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces, Geochim. Cosmochim. Acta 62 (1998) 3285-3300.

    16. [16] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite, Geochim. Cosmochim. Acta 62 (1998) 3499-3514.[16] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite, Geochim. Cosmochim. Acta 62 (1998) 3499-3514.

    17. [17] J.S. Loring, M.H. Sandstrom, K. Noreńn, P. Persson, Rethinking arsenate coordination at the surface of goethite, Chem.-Eur. J. 15 (2009) 5063-5072.[17] J.S. Loring, M.H. Sandstrom, K. Noreńn, P. Persson, Rethinking arsenate coordination at the surface of goethite, Chem.-Eur. J. 15 (2009) 5063-5072.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  900
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2014-12-16
  • 收稿日期:  2014-09-30
  • 网络出版日期:  2014-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章