pH-induced structural changes of surface immobilized poly(L-lysine) by two-dimensional (2D) infrared correlation study

Eun Joo Yoo Boknam Chae Young Mee Jung Seung Woo Lee

Citation:  Eun Joo Yoo, Boknam Chae, Young Mee Jung, Seung Woo Lee. pH-induced structural changes of surface immobilized poly(L-lysine) by two-dimensional (2D) infrared correlation study[J]. Chinese Chemical Letters, 2015, 26(2): 173-176. doi: 10.1016/j.cclet.2014.12.012 shu

pH-induced structural changes of surface immobilized poly(L-lysine) by two-dimensional (2D) infrared correlation study

    通讯作者: Young Mee Jung,
    Seung Woo Lee,
  • 基金项目:

    Planning (KETEP) grant (No. 20104010100580) funded by the Korean Ministry of Knowledge Economy. (KETEP)

摘要: This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine) (PLL) film. Two-dimensional (2D) correlation analysis was applied to the Fourier transform infrared (FTIR) spectra of the surface-immobilized PLL filmto examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain. Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8. The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alkyl group in the side chain. From pH 1-8, the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.

English

  • 
    1. [1] S. Edmondson, V.L. Osborne, W.T.S. Huck, Polymer brushes via surface-initiated polymerization, Chem. Soc. Rev. 33 (2004) 14-22.[1] S. Edmondson, V.L. Osborne, W.T.S. Huck, Polymer brushes via surface-initiated polymerization, Chem. Soc. Rev. 33 (2004) 14-22.

    2. [2] M. Doebbelin, G. Arias, I. Loinaz, et al., Tuning Surface Wettability of poly (3-sulfopropyl methacrylate) brushes by cationic surfactantdriven interactions, Macromol. Rapid Commun. 29 (2008) 871-875.[2] M. Doebbelin, G. Arias, I. Loinaz, et al., Tuning Surface Wettability of poly (3-sulfopropyl methacrylate) brushes by cationic surfactantdriven interactions, Macromol. Rapid Commun. 29 (2008) 871-875.

    3. [3] O. Azzaroni, A.A. Brown, W.T.S. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self-association, Angew. Chem. Int. Ed. 45 (2006) 1770-1774.[3] O. Azzaroni, A.A. Brown, W.T.S. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self-association, Angew. Chem. Int. Ed. 45 (2006) 1770-1774.

    4. [4] I. Borukhov, I. Leibler, Enthalpic stabilization of brush-coated particles in a polymer melt, Macromolecules 35 (2002) 5171-5182.[4] I. Borukhov, I. Leibler, Enthalpic stabilization of brush-coated particles in a polymer melt, Macromolecules 35 (2002) 5171-5182.

    5. [5] O. Azzaroni, Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields, J. Polym. Sci. A: Polym. Chem. 50 (2012) 3225-3258.[5] O. Azzaroni, Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields, J. Polym. Sci. A: Polym. Chem. 50 (2012) 3225-3258.

    6. [6] C.M. Hui, J. Pietrasik, M. Schmitt, et al., Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials, Chem. Mater. 26 (2014) 745-762.[6] C.M. Hui, J. Pietrasik, M. Schmitt, et al., Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials, Chem. Mater. 26 (2014) 745-762.

    7. [7] R. Barbey, L. Lavanant, D. Paripovic, et al., Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications, Chem. Rev. 109 (2009) 5437-5527.[7] R. Barbey, L. Lavanant, D. Paripovic, et al., Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications, Chem. Rev. 109 (2009) 5437-5527.

    8. [8] Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto, T. Fukuda, Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization, Adv. Polym. Sci. 197 (2006) 1-45.[8] Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto, T. Fukuda, Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization, Adv. Polym. Sci. 197 (2006) 1-45.

    9. [9] B. Zhao, W.J. Brittain, Polymer brushes: surface-immobilized macromolecules, J. Prog. Polym. Sci. 25 (2000) 677-710.[9] B. Zhao, W.J. Brittain, Polymer brushes: surface-immobilized macromolecules, J. Prog. Polym. Sci. 25 (2000) 677-710.

    10. [10] K. Matyjaszewski, P.J. Miller, N. Shukla, et al., Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator, Macromolecules 32 (1999) 8716-8724.[10] K. Matyjaszewski, P.J. Miller, N. Shukla, et al., Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator, Macromolecules 32 (1999) 8716-8724.

    11. [11] M. Baum, W.J. Brittain, Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique, Macromolecules 35 (2002) 610-615.[11] M. Baum, W.J. Brittain, Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique, Macromolecules 35 (2002) 610-615.

    12. [12] C.D. Grande, M.C. Tria, G. Jiang, R. Ponnapati, R. Advincula, Surface-grafted polymers from electropolymerized polythiophene RAFT agent, Macromolecules 44 (2011) 966-975.[12] C.D. Grande, M.C. Tria, G. Jiang, R. Ponnapati, R. Advincula, Surface-grafted polymers from electropolymerized polythiophene RAFT agent, Macromolecules 44 (2011) 966-975.

    13. [13] A. Juang, O.A. Scherman, R.H. Grubbs, H. Robert, N.S. Lewis, Formation of covalently attached polymer overlayers on Si(1 1 1) surfaces using ring-opening metathesis polymerization methods, Langmuir 17 (2001) 1321-1323.[13] A. Juang, O.A. Scherman, R.H. Grubbs, H. Robert, N.S. Lewis, Formation of covalently attached polymer overlayers on Si(1 1 1) surfaces using ring-opening metathesis polymerization methods, Langmuir 17 (2001) 1321-1323.

    14. [14] H.A. Haque, S. Kakehi, M. Hara, S. Nagano, T. Seki, High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization, Langmuir 29 (2013) 7571-7575.[14] H.A. Haque, S. Kakehi, M. Hara, S. Nagano, T. Seki, High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization, Langmuir 29 (2013) 7571-7575.

    15. [15] B.J. Sparks, J.G. Ray, D.A. Savin, C.M. Stafford, D.L. Patton, Synthesis of thiolclickable and block copolypeptide brushes via nickel-mediated surface initiated polymerization of a-amino acid N-carboxyanhydrides (NCAs), Chem. Commun. 47 (2011) 6245-6247.[15] B.J. Sparks, J.G. Ray, D.A. Savin, C.M. Stafford, D.L. Patton, Synthesis of thiolclickable and block copolypeptide brushes via nickel-mediated surface initiated polymerization of a-amino acid N-carboxyanhydrides (NCAs), Chem. Commun. 47 (2011) 6245-6247.

    16. [16] H. Duran, B. Yameen, H.U. Khan, R. Fö rch, W. Knoll, Surface-initiated ring opening polymerization of N-carboxy anhydride of benzyl-L-glutamate monomers on soft flexible substrates, React. Funct. Polym. 73 (2013) 606-612.[16] H. Duran, B. Yameen, H.U. Khan, R. Fö rch, W. Knoll, Surface-initiated ring opening polymerization of N-carboxy anhydride of benzyl-L-glutamate monomers on soft flexible substrates, React. Funct. Polym. 73 (2013) 606-612.

    17. [17] Y. Wang, Y.C. Chang, Preparation of unidirectional end-grafted a-helical polypeptides by solvent quenching, J. Am. Chem. Soc. 125 (2003) 6376-6377.[17] Y. Wang, Y.C. Chang, Preparation of unidirectional end-grafted a-helical polypeptides by solvent quenching, J. Am. Chem. Soc. 125 (2003) 6376-6377.

    18. [18] Y. Wang, Y.C. Chang, Synthesis and conformational transition of surface-tethered polypeptide: poly(L-lysine), Macromolecules 36 (2003) 6511-6518.[18] Y. Wang, Y.C. Chang, Synthesis and conformational transition of surface-tethered polypeptide: poly(L-lysine), Macromolecules 36 (2003) 6511-6518.

    19. [19] S.A. Curtin, T.J. Deming, Initiators for end-group functionalized polypeptides via tandem addition reactions, J. Am. Chem. Soc. 121 (1999) 7427-7428.[19] S.A. Curtin, T.J. Deming, Initiators for end-group functionalized polypeptides via tandem addition reactions, J. Am. Chem. Soc. 121 (1999) 7427-7428.

    20. [20] J. Wang, M.I. Gibson, R. Barbey, S.-J. Xiao, H.-A. Klok, Nonfouling polypeptide brushes via surface-initiated polymerization of N-oligo(ethylene glycol) succinate-L-lysine N-carboxyanhydride, Macromol. Rapid Commun. 30 (2009) 845-850.[20] J. Wang, M.I. Gibson, R. Barbey, S.-J. Xiao, H.-A. Klok, Nonfouling polypeptide brushes via surface-initiated polymerization of N-oligo(ethylene glycol) succinate-L-lysine N-carboxyanhydride, Macromol. Rapid Commun. 30 (2009) 845-850.

    21. [21] R.J. Mart, R.D. Osborne, M.M. Stevens, R.V. Ulijn, Peptide-based stimuli-responsive biomaterials, Soft Matter 2 (2006) 822-835.[21] R.J. Mart, R.D. Osborne, M.M. Stevens, R.V. Ulijn, Peptide-based stimuli-responsive biomaterials, Soft Matter 2 (2006) 822-835.

    22. [22] H. Block, Poly (Gamma-Benzyl-L-Glutamate) and Other Glutamic Acid Containing Polymers, Gordon & Breach Science Publishers, New York, 1983.[22] H. Block, Poly (Gamma-Benzyl-L-Glutamate) and Other Glutamic Acid Containing Polymers, Gordon & Breach Science Publishers, New York, 1983.

    23. [23] D. Kang, S.R. Ryu, Y. Park, B. Czarnik-Matusewicz, Y.M. Jung, pH-induced structural changes of ovalbumin studied by 2D correlation IR spectroscopy, J. Mol. Struct. 1069 (2014) 299-304.[23] D. Kang, S.R. Ryu, Y. Park, B. Czarnik-Matusewicz, Y.M. Jung, pH-induced structural changes of ovalbumin studied by 2D correlation IR spectroscopy, J. Mol. Struct. 1069 (2014) 299-304.

    24. [24] W. Dzwolark, V. Smirnovas, A conformational a-helix to b-sheet transition accompanies racemic self-assembly of polylysine: an FTIR spectroscopic study, Biophys. Chem. 115 (2005) 49-54.[24] W. Dzwolark, V. Smirnovas, A conformational a-helix to b-sheet transition accompanies racemic self-assembly of polylysine: an FTIR spectroscopic study, Biophys. Chem. 115 (2005) 49-54.

    25. [25] E.S. Manas, Z. Getahun, W.W. Wright, W.F. DeGrado, J.M. Vanderkooi, Infrared spectra of amide groups in a-helical proteins: evidence for hydrogen bonding between helices and water, J. Am. Chem. Soc. 122 (2000) 9883-9890.[25] E.S. Manas, Z. Getahun, W.W. Wright, W.F. DeGrado, J.M. Vanderkooi, Infrared spectra of amide groups in a-helical proteins: evidence for hydrogen bonding between helices and water, J. Am. Chem. Soc. 122 (2000) 9883-9890.

    26. [26] M. Rozenberg, G. Shoham, FTIR spectra of solid poly-L-lysine in the stretching NH mode range, Biophys. Chem. 125 (2007) 166-171.[26] M. Rozenberg, G. Shoham, FTIR spectra of solid poly-L-lysine in the stretching NH mode range, Biophys. Chem. 125 (2007) 166-171.

    27. [27] I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336.[27] I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336.

    28. [28] B. Chae, S.W. Lee, M. Ree, Y.M. Jung, S.B. Kim, Photoreaction and molecular reorientation in a nanoscaled film of poly(methyl 4-(methacryloyloxy) cinnamate) studied by two-dimensional FTIR and UV correlation spectroscopy, Langmuir 19 (2003) 687-695.[28] B. Chae, S.W. Lee, M. Ree, Y.M. Jung, S.B. Kim, Photoreaction and molecular reorientation in a nanoscaled film of poly(methyl 4-(methacryloyloxy) cinnamate) studied by two-dimensional FTIR and UV correlation spectroscopy, Langmuir 19 (2003) 687-695.

    29. [29] Y. Ozaki, Kwansei Gakuin University, Sanda, Japan. http://science.kwansei.ac.jp/ ozaki/.[29] Y. Ozaki, Kwansei Gakuin University, Sanda, Japan. http://science.kwansei.ac.jp/ ozaki/.

    30. [30] A. Dos, V. Schimming, S. Tosoni, H.-H. Limbach, Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations, J. Phys. Chem. B 112 (2008) 15604-15615.[30] A. Dos, V. Schimming, S. Tosoni, H.-H. Limbach, Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations, J. Phys. Chem. B 112 (2008) 15604-15615.

    31. [31] Y.P. Myer, The pH-induced helix-coil transition of poly-L-lysine and poly-Lglutamic acid and the 238 mm dichroic band, Macromolecues 2 (1969) 624-628.[31] Y.P. Myer, The pH-induced helix-coil transition of poly-L-lysine and poly-Lglutamic acid and the 238 mm dichroic band, Macromolecues 2 (1969) 624-628.

    32. [32] L. Sun, R.M. Crooks, A.J. Ricco, Molecular Interactions between organized, surfaceconfined monolayers and vapor-phase probe molecules. 5. Acid-base interactions, Langmuir 9 (1993) 1775-1780.[32] L. Sun, R.M. Crooks, A.J. Ricco, Molecular Interactions between organized, surfaceconfined monolayers and vapor-phase probe molecules. 5. Acid-base interactions, Langmuir 9 (1993) 1775-1780.

    33. [33] S.C. Yasui, T.A. Keiderling, Vibrational circular dichroism of polypeptides. 8. Poly(lysine) conformations as a function of pH in aqueous solution, J. Am. Chem. Soc. 108 (1986) 5576-5581.[33] S.C. Yasui, T.A. Keiderling, Vibrational circular dichroism of polypeptides. 8. Poly(lysine) conformations as a function of pH in aqueous solution, J. Am. Chem. Soc. 108 (1986) 5576-5581.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  884
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2014-12-30
  • 收稿日期:  2014-11-04
  • 网络出版日期:  2014-12-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章