
Recent developments in two-dimensional (2D) correlation spectroscopy
English
Recent developments in two-dimensional (2D) correlation spectroscopy
-
-
-
[1] (a) I. Noda, Two-dimensional infrared (2D IR) spectroscopy of synthetic and biopolymers, Bull. Am. Phys. Soc. 31 (1986) 520; (b) I. Noda, Two-dimensional infrared (2D IR) spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8120; (c) I. Noda, Two-dimensional infrared (2D IR) spectroscopy: theory and applications, Appl. Spectrosc. 44 (1990) 550-561; (d) I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336; (e) I. Noda, Determination of two-dimensional correlation spectra using the Hilbert transform, Appl. Spectrosc. 54 (2000) 994-999; (f) I. Noda, A.E. Dowrey, C. Marcott, G.M. Story, Y. Ozaki, Generalized two-dimensional correlation spectroscopy, Appl. Spectrosc. 54 (2000) 236A-248A; (g) I. Noda, Y. Ozaki, Two-dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy, Wiley, Chichester, 2004.[1] (a) I. Noda, Two-dimensional infrared (2D IR) spectroscopy of synthetic and biopolymers, Bull. Am. Phys. Soc. 31 (1986) 520; (b) I. Noda, Two-dimensional infrared (2D IR) spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8120; (c) I. Noda, Two-dimensional infrared (2D IR) spectroscopy: theory and applications, Appl. Spectrosc. 44 (1990) 550-561; (d) I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336; (e) I. Noda, Determination of two-dimensional correlation spectra using the Hilbert transform, Appl. Spectrosc. 54 (2000) 994-999; (f) I. Noda, A.E. Dowrey, C. Marcott, G.M. Story, Y. Ozaki, Generalized two-dimensional correlation spectroscopy, Appl. Spectrosc. 54 (2000) 236A-248A; (g) I. Noda, Y. Ozaki, Two-dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy, Wiley, Chichester, 2004.
-
[2] (a) I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317-1323; (b) I. Noda, Progress in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 3-17; (c) I. Noda, Advances in two-dimensional correlation spectroscopy, Viv. Spectrosc. 36 (2004) 143-165; (d) I. Noda, Progress in two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 2-15; (e) I. Noda, Recent advancement in the field of two-dimensional correlation spectroscopy, J. Mol. Struct. 883-884 (2008) 2-26; (f) I. Noda, Two-dimensional correlation spectroscopy—biannual survey 2007-2009, J. Mol. Struct. 974 (2010) 3-24; (g) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments, J. Mol. Struct. 1069 (2014) 3-22; (h) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes, J. Mol. Struct. 1069 (2014) 23-49.[2] (a) I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317-1323; (b) I. Noda, Progress in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 3-17; (c) I. Noda, Advances in two-dimensional correlation spectroscopy, Viv. Spectrosc. 36 (2004) 143-165; (d) I. Noda, Progress in two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 2-15; (e) I. Noda, Recent advancement in the field of two-dimensional correlation spectroscopy, J. Mol. Struct. 883-884 (2008) 2-26; (f) I. Noda, Two-dimensional correlation spectroscopy—biannual survey 2007-2009, J. Mol. Struct. 974 (2010) 3-24; (g) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments, J. Mol. Struct. 1069 (2014) 3-22; (h) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes, J. Mol. Struct. 1069 (2014) 23-49.
-
[3] (a) I. Noda, Two-dimensional correlation approach to the dynamic rheooptical characterization of polymers, Chemtracts Macromol. Chem. 1 (1990) 89-105; (b) F.E. Barton II, D.S. Himmersbach, J.H. Duckworth, M.J. Smith, Two-dimensional vibrational spectroscopy: correlation of mid-and near-infrared regions, Appl. Spectrosc. 46 (1992) 420-429; (c) N. Katayama, M. Kondo, M. Miyazawa, Study on molecular structure and hydration mechanism of Domyouji-ko starch by IE and NIR hetero 2D analysis, J. Mol. Struct. 974 (2010) 179-182; (d) T. Nishi, T. Genkawa, M. Watari, Y. Ozaki, Selection of NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy, Anal. Sci. 28 (2012) 1165-1170; (e) H. Yamasaki, S. Morita, Epoxy curing reaction studied by using two-dimensional correlation infrared and near-infrared spectroscopy, J. Appl. Polym. Sci. 119 (2011) 871-881; (f) B.K. Via, S. Adhikari, S. Taylor, Modeling for proximate analysis and heating value of torrefied biomass with vibrational spectroscopy, Bioresour. Technol. 133 (2013) 1-8;(g) Ž. Sovová, V. Kopecký Jr., T. Pazderka, et al., Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity, J. Mol. Model. 17 (2011) 1353-1370; (h) T.R. Rudd, E.A. Yates, M. Hricovíni, Spectroscopic and theoretical approaches for the determination of heparin saccharide structure and the study of protein-glycosaminoglycan complexes in solution, Curr. Med. Chem. 16 (2009) 4750-4766; (i) H.C. Choi, S.R. Ryu, H. Ji, et al., Two-dimensional hetero-spectral correlation analysis of X-ray photoelectron spectra and infrared spectra for spin-coated films of biodegradable poly(3-hydroxubutyrate-co-3-hydroxyhexanoate) copolymers, J. Phys. Chem. B 114 (2010) 10979-10985; (j) M. Mecozzi, M. Pietroletti, V. Gallo, M.E. Conti, Formation of incubated marine mucilages investigated by FTIR and UV-vis spectroscopy and supported by twodimensional correlation analysis, Marine Chem. 116 (2009) 18-35; (k) S.R. Ryu, W.M. Bae, W.J. Hong, K.J. Ihn, Y.M. Jung, Characterization of chain transfer reaction during radical polymerization of silver nanocomposite polyvinylpyrrolidone by using 2D hetero-spectral IR/NMR correlation spectroscopy, Vib. Spectrosc. 60 (2012) 168-172; (l) D.S. Smirnova, J.A. Kornfield, D.J. Lohshe, Morphology development in model polyethylene via two-dimensional correlation analysis, Macromolecules 44 (2011) 6836-6848; (m) L. Guo, N. Spegazzini, H. Sato, et al., Multistep crystallization process involving sequential formations of density fluctuations, “intermediate structures”, and lamellar crystallites: poly(3-hydroxybutyrate) as investigated by time-resolved synchrotron SAXS and WAXD, Macromolecules 45 (2012) 313-328; (n) L.R. Whitman, K.P. Bork, Y. Tang, Two-dimensional correlation in cyclic voltammetry and electrochemical quartz crystal microbalance: a complementary tool to conventional techniques, J. Electroanal. Chem. 661 (2011) 100-105; (o) J. Andary, J. Maalouly, R. Quaini, et al., Application of 2D correlation spectroscopy on olive stones acid hydrolysates: effect of overliming, Chemom. Intell. Lab. Syst. 113 (2012) 58-67.[3] (a) I. Noda, Two-dimensional correlation approach to the dynamic rheooptical characterization of polymers, Chemtracts Macromol. Chem. 1 (1990) 89-105; (b) F.E. Barton II, D.S. Himmersbach, J.H. Duckworth, M.J. Smith, Two-dimensional vibrational spectroscopy: correlation of mid-and near-infrared regions, Appl. Spectrosc. 46 (1992) 420-429; (c) N. Katayama, M. Kondo, M. Miyazawa, Study on molecular structure and hydration mechanism of Domyouji-ko starch by IE and NIR hetero 2D analysis, J. Mol. Struct. 974 (2010) 179-182; (d) T. Nishi, T. Genkawa, M. Watari, Y. Ozaki, Selection of NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy, Anal. Sci. 28 (2012) 1165-1170; (e) H. Yamasaki, S. Morita, Epoxy curing reaction studied by using two-dimensional correlation infrared and near-infrared spectroscopy, J. Appl. Polym. Sci. 119 (2011) 871-881; (f) B.K. Via, S. Adhikari, S. Taylor, Modeling for proximate analysis and heating value of torrefied biomass with vibrational spectroscopy, Bioresour. Technol. 133 (2013) 1-8;(g) Ž. Sovová, V. Kopecký Jr., T. Pazderka, et al., Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity, J. Mol. Model. 17 (2011) 1353-1370; (h) T.R. Rudd, E.A. Yates, M. Hricovíni, Spectroscopic and theoretical approaches for the determination of heparin saccharide structure and the study of protein-glycosaminoglycan complexes in solution, Curr. Med. Chem. 16 (2009) 4750-4766; (i) H.C. Choi, S.R. Ryu, H. Ji, et al., Two-dimensional hetero-spectral correlation analysis of X-ray photoelectron spectra and infrared spectra for spin-coated films of biodegradable poly(3-hydroxubutyrate-co-3-hydroxyhexanoate) copolymers, J. Phys. Chem. B 114 (2010) 10979-10985; (j) M. Mecozzi, M. Pietroletti, V. Gallo, M.E. Conti, Formation of incubated marine mucilages investigated by FTIR and UV-vis spectroscopy and supported by twodimensional correlation analysis, Marine Chem. 116 (2009) 18-35; (k) S.R. Ryu, W.M. Bae, W.J. Hong, K.J. Ihn, Y.M. Jung, Characterization of chain transfer reaction during radical polymerization of silver nanocomposite polyvinylpyrrolidone by using 2D hetero-spectral IR/NMR correlation spectroscopy, Vib. Spectrosc. 60 (2012) 168-172; (l) D.S. Smirnova, J.A. Kornfield, D.J. Lohshe, Morphology development in model polyethylene via two-dimensional correlation analysis, Macromolecules 44 (2011) 6836-6848; (m) L. Guo, N. Spegazzini, H. Sato, et al., Multistep crystallization process involving sequential formations of density fluctuations, “intermediate structures”, and lamellar crystallites: poly(3-hydroxybutyrate) as investigated by time-resolved synchrotron SAXS and WAXD, Macromolecules 45 (2012) 313-328; (n) L.R. Whitman, K.P. Bork, Y. Tang, Two-dimensional correlation in cyclic voltammetry and electrochemical quartz crystal microbalance: a complementary tool to conventional techniques, J. Electroanal. Chem. 661 (2011) 100-105; (o) J. Andary, J. Maalouly, R. Quaini, et al., Application of 2D correlation spectroscopy on olive stones acid hydrolysates: effect of overliming, Chemom. Intell. Lab. Syst. 113 (2012) 58-67.
-
[4] (a) L.T. Letendre, W. McNavage, C. Pibel, D.K. Kuo, H.L. Dai, Time-resolved FTIR emission spectroscopy of transient radicals, J. Chin. Chem. Soc. 52 (2005) 677-686; (b) W. McNavage, H.L. Dai, Two-dimensional cross-spectral correlation analysis and its application to time-resolved Fourier transform emission spectra of transient radicals, J. Chem. Phys. 123 (2005) 184104; (c) F. Pi, H. Shinzawa, M.A. Czarnecki, M. Iwahashi, M. Suzuki, Y. Ozaki, Selfassembling of oleic acid (cis-9,cis-12-octadecalienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 974 (2010) 40-45; (d) C. Marcott, G.M. Story, A.E. Dowrey, I. Noda, in: C.L. Wilkins (Ed.), Enhancement of Chemical Information through Computer-Assisted Examination of Spectral Variations, vol. 4, Computer-Enhanced Analytical Spectroscopy, Plenum, New York, 1993, pp. 237-255; (e) J. Xu, S. Cai, X. Li, J. Dong, J. Ding, Z. Chen, Statistical two-dimensional correlation spectroscopy of urine and serum from metabolomics data, Chemom. Intell. Lab. Syst. 112 (2012) 33-40.[4] (a) L.T. Letendre, W. McNavage, C. Pibel, D.K. Kuo, H.L. Dai, Time-resolved FTIR emission spectroscopy of transient radicals, J. Chin. Chem. Soc. 52 (2005) 677-686; (b) W. McNavage, H.L. Dai, Two-dimensional cross-spectral correlation analysis and its application to time-resolved Fourier transform emission spectra of transient radicals, J. Chem. Phys. 123 (2005) 184104; (c) F. Pi, H. Shinzawa, M.A. Czarnecki, M. Iwahashi, M. Suzuki, Y. Ozaki, Selfassembling of oleic acid (cis-9,cis-12-octadecalienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 974 (2010) 40-45; (d) C. Marcott, G.M. Story, A.E. Dowrey, I. Noda, in: C.L. Wilkins (Ed.), Enhancement of Chemical Information through Computer-Assisted Examination of Spectral Variations, vol. 4, Computer-Enhanced Analytical Spectroscopy, Plenum, New York, 1993, pp. 237-255; (e) J. Xu, S. Cai, X. Li, J. Dong, J. Ding, Z. Chen, Statistical two-dimensional correlation spectroscopy of urine and serum from metabolomics data, Chemom. Intell. Lab. Syst. 112 (2012) 33-40.
-
[5] (a) Y. Wu, J.H. Jiang, Y. Ozaki, A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy, J. Phys. Chem. A 106 (2002) 2422-2429; (b) Y. Wu, F. Meersman, Y. Ozaki, A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressureand temperature-induced phase separation of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) in aqueous solution, Macromolecules 39 (2006) 1182-1188; (c) T.J. Kamerzell, C.R. Middaugh, Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability, Biochemistry 46 (2007) 9762-9773; (d) G.M. Kirwan, D.I. Fernandez, J.O. Niere, M.J. Adams, General and hybrid correlation nuclear magnetic resonance analysis of phosphorous in Phytophthora palmivora, Anal. Biochem. 429 (2012) 1-7; (e) W. Zhang, R. Liu, W. Zhang, H. Jia, K. Xu, Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing, Biomed. Opt. Expr. 4 (2013) 789-803.[5] (a) Y. Wu, J.H. Jiang, Y. Ozaki, A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy, J. Phys. Chem. A 106 (2002) 2422-2429; (b) Y. Wu, F. Meersman, Y. Ozaki, A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressureand temperature-induced phase separation of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) in aqueous solution, Macromolecules 39 (2006) 1182-1188; (c) T.J. Kamerzell, C.R. Middaugh, Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability, Biochemistry 46 (2007) 9762-9773; (d) G.M. Kirwan, D.I. Fernandez, J.O. Niere, M.J. Adams, General and hybrid correlation nuclear magnetic resonance analysis of phosphorous in Phytophthora palmivora, Anal. Biochem. 429 (2012) 1-7; (e) W. Zhang, R. Liu, W. Zhang, H. Jia, K. Xu, Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing, Biomed. Opt. Expr. 4 (2013) 789-803.
-
[6] (a) H. Shinzawa, K. Awa, T. Okumura, S. Morita, M. Otsuka, Y. Ozaki, H. Sato, Raman imaging analysis of pharmaceutical tablets by two-dimensional (2D) correlation spectroscopy, Vib. Spectrosc. 51 (2009) 125-131; (b) H. Shinzawa, S. Morita, K. Awa, et al., Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy, Appl. Spectrosc. 63 (2009) 501-506; (c) H. Shinzawa, T. Genkawa, W. Kanematsu, Pressure-induced association of oleic acid (OA) under varying temperature studied by multiple-perturbation two-dimensional (2D) IR correlation spectroscopy, J. Mol. Struct. 1028 (2012) 164-169; (d) H. Shinzawa, M. Nishida, W. Kanematsu, et al., Parallel factor (PARAFAC) kernel analysis of temperature-and composition-dependent NMR spectra of poly(lactic acid) nanocomposites, Analyst 137 (2012) 1913-1921; (e) H. Shinzawa, K. Awa, I. Noda, Y. Ozaki, Multiple-perturbation two-dimensional near-infrared correlation study of time-dependent water absorption behavior of cellulose affected by pressure, Appl. Spectrosc. 67 (2013) 163-170.[6] (a) H. Shinzawa, K. Awa, T. Okumura, S. Morita, M. Otsuka, Y. Ozaki, H. Sato, Raman imaging analysis of pharmaceutical tablets by two-dimensional (2D) correlation spectroscopy, Vib. Spectrosc. 51 (2009) 125-131; (b) H. Shinzawa, S. Morita, K. Awa, et al., Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy, Appl. Spectrosc. 63 (2009) 501-506; (c) H. Shinzawa, T. Genkawa, W. Kanematsu, Pressure-induced association of oleic acid (OA) under varying temperature studied by multiple-perturbation two-dimensional (2D) IR correlation spectroscopy, J. Mol. Struct. 1028 (2012) 164-169; (d) H. Shinzawa, M. Nishida, W. Kanematsu, et al., Parallel factor (PARAFAC) kernel analysis of temperature-and composition-dependent NMR spectra of poly(lactic acid) nanocomposites, Analyst 137 (2012) 1913-1921; (e) H. Shinzawa, K. Awa, I. Noda, Y. Ozaki, Multiple-perturbation two-dimensional near-infrared correlation study of time-dependent water absorption behavior of cellulose affected by pressure, Appl. Spectrosc. 67 (2013) 163-170.
-
[7] (a) J. Qi, H. Li, K. Huang, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy and its application in probing intermolecular interactions, Appl. Spectrosc. 61 (2007) 1359-1365; (b) J. Qi, K. Huang, X. Gao, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy: application in probing lanthanide ions interactions with organic ligands in solution mixture, J. Mol. Struct. 883-884 (2008) 116-123; (c) Y. Liu, C. Zhang, S. Liu, et al., Modified orthogonal sample design scheme to probe intermolecular interactions, J. Mol. Struct. 883-884 (2008) 124-128; (d) C. Zhang, K. Huang, H. Li, et al., Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions, J. Phys. Chem. A 113 (2009) 12142-12156; (e) X. Li, Q. Pan, J. Chen, et al., Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands, Appl. Spectrosc. 65 (2011) 901-917; (f) J. Chen, Q. Bi, S. Liu, et al., Double asynchronous sample design scheme for probing intermolecular interactions, J. Phys. Chem. A 116 (2012) 10904-10916; (g) X. Li, S. Liu, J. Chen, et al., The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach, Vib. Spectrosc. 60 (2012) 212-216; (h) X. Li, Q. Bi, S. Liu, et al., Improvement of the sensitivity of the twodimensional asynchronous spectroscopy based on the ASOD approach by using a modified reference spectrum, J. Mol. Struct. 1034 (2013) 101-111.[7] (a) J. Qi, H. Li, K. Huang, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy and its application in probing intermolecular interactions, Appl. Spectrosc. 61 (2007) 1359-1365; (b) J. Qi, K. Huang, X. Gao, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy: application in probing lanthanide ions interactions with organic ligands in solution mixture, J. Mol. Struct. 883-884 (2008) 116-123; (c) Y. Liu, C. Zhang, S. Liu, et al., Modified orthogonal sample design scheme to probe intermolecular interactions, J. Mol. Struct. 883-884 (2008) 124-128; (d) C. Zhang, K. Huang, H. Li, et al., Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions, J. Phys. Chem. A 113 (2009) 12142-12156; (e) X. Li, Q. Pan, J. Chen, et al., Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands, Appl. Spectrosc. 65 (2011) 901-917; (f) J. Chen, Q. Bi, S. Liu, et al., Double asynchronous sample design scheme for probing intermolecular interactions, J. Phys. Chem. A 116 (2012) 10904-10916; (g) X. Li, S. Liu, J. Chen, et al., The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach, Vib. Spectrosc. 60 (2012) 212-216; (h) X. Li, Q. Bi, S. Liu, et al., Improvement of the sensitivity of the twodimensional asynchronous spectroscopy based on the ASOD approach by using a modified reference spectrum, J. Mol. Struct. 1034 (2013) 101-111.
-
[8] (a) I. Noda, Projection two-dimensional correlation analysis, J. Mol. Struct. 974 (2010) 116-126; (b) L. Zhang, I. Noda, Y. Wu, Concatenated two-dimensional correlation analysis: a new possibility for generalized two-dimensional correlation spectroscopy and its application to the examination of process reversibility, Appl. Spectrosc. 64 (2010) 343-350; (c) L. Zhang, I. Noda, Y. Wu, An application of concatenated 2D correlation spectroscopy: exploration of the reversibility of the temperature-induced hydration variation of poly(N-isopropylmethacrylamide) in aqueous solution, J. Mol. Struct. 974 (2010) 80-87; (d) M. Thomas, H. Richardson, Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal 40-n-octyl-cyanobiphenyl (8CB), Vib. Spectrosc. 24 (2000) 137-146; (e) S. Morita, H. Shinzawa, I. Noda, Y. Ozaki, Perturbation-correlation movingwindow two-dimensional correlation spectroscopy, Appl. Spectrosc. 60 (2006) 398-406; (f) S.R. Ryu, I. Noda, C.H. Lee, et al., Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes, Appl. Spectrosc. 65 (2011) 359-368; (g) I. Noda, Close-up view on the inner workings of two-dimensional correlation spectroscopy, Vib. Spectrosc. 60 (2012) 146-153; (h) I. Noda, Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species, J. Mol. Struct. 1069 (2014) 60-72; (i) S. Š ašić, A. Muszynski, Y. Ozaki, A new possibility of the generalized twodimensional correlation spectroscopy. 1. Sample-sample correlation spectroscopy, J. Phys. Chem. A 104 (2000) 6380-6387; (j) Y.M. Jung, S.B. Kim, I. Noda, New approach to generalized two-dimensional correlation spectroscopy. II: Eigenvalue manipulation transformation (EMT) for noise suppression, Appl. Spectrosc. 57 (2003) 557-563; (k) I. Noda, Two-dimensional correlation analysis of unevenly spaced spectral data, Appl. Spectrosc. 57 (2003) 1049-1051; (l) I. Noda, Scaling techniques to enhance two-dimensional correlation spectra, J. Mol. Struct. 883-884 (2008) 216-227; (m) Y. Wu, I. Noda, Extension of quadrature orthogonal signal corrected twodimensional (QOSC 2D) correlation spectroscopy I: principal component analysis based QOSC 2D, Appl. Spectrosc. 61 (2007) 1040-1044; (m) I. Noda, Recent mathematical developments in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 201-204; (o) S. Morita, Y. Ozaki, I. Noda, Global phase angle description of generalized twodimensional correlation spectroscopy: 1. theory and its simulation for practical use, Appl. Spectrosc. 55 (2001) 1618-1621; (p) I. Noda, Kernel analysis for two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 34-40.[8] (a) I. Noda, Projection two-dimensional correlation analysis, J. Mol. Struct. 974 (2010) 116-126; (b) L. Zhang, I. Noda, Y. Wu, Concatenated two-dimensional correlation analysis: a new possibility for generalized two-dimensional correlation spectroscopy and its application to the examination of process reversibility, Appl. Spectrosc. 64 (2010) 343-350; (c) L. Zhang, I. Noda, Y. Wu, An application of concatenated 2D correlation spectroscopy: exploration of the reversibility of the temperature-induced hydration variation of poly(N-isopropylmethacrylamide) in aqueous solution, J. Mol. Struct. 974 (2010) 80-87; (d) M. Thomas, H. Richardson, Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal 40-n-octyl-cyanobiphenyl (8CB), Vib. Spectrosc. 24 (2000) 137-146; (e) S. Morita, H. Shinzawa, I. Noda, Y. Ozaki, Perturbation-correlation movingwindow two-dimensional correlation spectroscopy, Appl. Spectrosc. 60 (2006) 398-406; (f) S.R. Ryu, I. Noda, C.H. Lee, et al., Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes, Appl. Spectrosc. 65 (2011) 359-368; (g) I. Noda, Close-up view on the inner workings of two-dimensional correlation spectroscopy, Vib. Spectrosc. 60 (2012) 146-153; (h) I. Noda, Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species, J. Mol. Struct. 1069 (2014) 60-72; (i) S. Š ašić, A. Muszynski, Y. Ozaki, A new possibility of the generalized twodimensional correlation spectroscopy. 1. Sample-sample correlation spectroscopy, J. Phys. Chem. A 104 (2000) 6380-6387; (j) Y.M. Jung, S.B. Kim, I. Noda, New approach to generalized two-dimensional correlation spectroscopy. II: Eigenvalue manipulation transformation (EMT) for noise suppression, Appl. Spectrosc. 57 (2003) 557-563; (k) I. Noda, Two-dimensional correlation analysis of unevenly spaced spectral data, Appl. Spectrosc. 57 (2003) 1049-1051; (l) I. Noda, Scaling techniques to enhance two-dimensional correlation spectra, J. Mol. Struct. 883-884 (2008) 216-227; (m) Y. Wu, I. Noda, Extension of quadrature orthogonal signal corrected twodimensional (QOSC 2D) correlation spectroscopy I: principal component analysis based QOSC 2D, Appl. Spectrosc. 61 (2007) 1040-1044; (m) I. Noda, Recent mathematical developments in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 201-204; (o) S. Morita, Y. Ozaki, I. Noda, Global phase angle description of generalized twodimensional correlation spectroscopy: 1. theory and its simulation for practical use, Appl. Spectrosc. 55 (2001) 1618-1621; (p) I. Noda, Kernel analysis for two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 34-40.
-
-

计量
- PDF下载量: 0
- 文章访问数: 1032
- HTML全文浏览量: 62