Synthesis and antioxidant activities of flavonoids derivatives, troxerutin and 3’, 4’, 7-triacetoxyethoxyquercetin

Jian-Dong Xu Li-Wei Zhang Yu-Fa Liu

Citation:  Jian-Dong Xu, Li-Wei Zhang, Yu-Fa Liu. Synthesis and antioxidant activities of flavonoids derivatives, troxerutin and 3’, 4’, 7-triacetoxyethoxyquercetin[J]. Chinese Chemical Letters, 2013, 24(3): 223-226. shu

Synthesis and antioxidant activities of flavonoids derivatives, troxerutin and 3’, 4’, 7-triacetoxyethoxyquercetin

    通讯作者: Yu-Fa Liu,
摘要: Syntheses of two very important derivatives of quercetin, troxerutin and 3', 4', 7-triacetoxyethoxyquercetin were described. The latter was synthesized by highly selective esterification reaction in first time. The compounds were characterized by NMR, IR and Mass spectroscopy. Additionally, the antioxidant activities of the compounds were tested by means of improved pyrogallol autoxidation method. This was the first in using this method to test the antioxidant activities of these two compounds in vitro. The optimum system of pyorgallol autoxidation spectrophotometry was investigated and established according to the reaction rules. The assay indicated that these compounds showed noticeable antioxidant activities, and compound 2 was much more effective as a free radical scavenger than the compound 1 vitamin C was used as a reference material.

English

  • 
    1. [1] P.C.H. Hollman, I.C.W. Arts, Flavonols, flavones and flavanols-nature, occurrence and dietary burden, J. Sci. Food Agric. 80 (2000) 1081-1093.[1] P.C.H. Hollman, I.C.W. Arts, Flavonols, flavones and flavanols-nature, occurrence and dietary burden, J. Sci. Food Agric. 80 (2000) 1081-1093.

    2. [2] Y.L. Mi, C.Q. Zhang, C.M. Li, et al., Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles, Biosci. Biotechnol. Biochem. 5 (2010) 934-938.[2] Y.L. Mi, C.Q. Zhang, C.M. Li, et al., Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles, Biosci. Biotechnol. Biochem. 5 (2010) 934-938.

    3. [3] B. da cruz. Pádua, L.D. Silva, J.V. Rossoni, et al., Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats, J. Ethnopharmacol. 3 (2010) 381-386.[3] B. da cruz. Pádua, L.D. Silva, J.V. Rossoni, et al., Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats, J. Ethnopharmacol. 3 (2010) 381-386.

    4. [4] J. Duarte, R. Jimenez, F. OValle, et al., Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats, J. Hypertens. 20 (9) (2002) 1843-1854.[4] J. Duarte, R. Jimenez, F. OValle, et al., Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats, J. Hypertens. 20 (9) (2002) 1843-1854.

    5. [5] G. Bobe, P.S. Albert, L.B. Sansbury, et al., Interleukin-6 as a potential indicator for prevention of high-risk adenoma recurrence by dietary flavonols in the polyp prevention trial, Cancer Prev. Res. (Phila Pa) 6 (2010) 764-775.[5] G. Bobe, P.S. Albert, L.B. Sansbury, et al., Interleukin-6 as a potential indicator for prevention of high-risk adenoma recurrence by dietary flavonols in the polyp prevention trial, Cancer Prev. Res. (Phila Pa) 6 (2010) 764-775.

    6. [6] N.K. Khoo, C.R. White, R.P. Patel, et al., Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels, Free Radic. Biol. Med. 3 (2010) 339-347.[6] N.K. Khoo, C.R. White, R.P. Patel, et al., Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels, Free Radic. Biol. Med. 3 (2010) 339-347.

    7. [7] M. Yoshizumi, K. Tsuchiya, K. Kirima, et al., Quercetin inhibits shc-and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin Ⅱ in cultured rat aortic smooth muscle cells, Mol. Pharmacol. 60 (2001) 656-665.[7] M. Yoshizumi, K. Tsuchiya, K. Kirima, et al., Quercetin inhibits shc-and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin Ⅱ in cultured rat aortic smooth muscle cells, Mol. Pharmacol. 60 (2001) 656-665.

    8. [8] N. Suematsu, M. Hosoda, K. Fujimori, Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells, Neurosci. Lett. 504 (2011) 223-227.[8] N. Suematsu, M. Hosoda, K. Fujimori, Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells, Neurosci. Lett. 504 (2011) 223-227.

    9. [9] G.J. Du, H.H. Lin, Y.M. Yang, et al., Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice, Int. Immunopharmacol. 10 (2010) 819-826.[9] G.J. Du, H.H. Lin, Y.M. Yang, et al., Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice, Int. Immunopharmacol. 10 (2010) 819-826.

    10. [10] S. Kwaii, Y. Tomono, E. Katase, K. Ogawa, M. Yano, Effect of citrus flavonoids on HL-60 cell differentiation, Anticancer Res. 19 (2A) (1999) 1261-1269.[10] S. Kwaii, Y. Tomono, E. Katase, K. Ogawa, M. Yano, Effect of citrus flavonoids on HL-60 cell differentiation, Anticancer Res. 19 (2A) (1999) 1261-1269.

    11. [11] B. Csokay, N. Prajda, G. Weber, E. Olah, Molecular mechanisms in the antiproliferative action of quercetin, Life Sci. 64 (24) (1997) 2157-2163.[11] B. Csokay, N. Prajda, G. Weber, E. Olah, Molecular mechanisms in the antiproliferative action of quercetin, Life Sci. 64 (24) (1997) 2157-2163.

    12. [12] A. Chatzopoulou, A. Karioti, C. Gousiadou, et al., Depsides and other polar constituents from Origanum dictamnus L. and their in vitro antimicrobial activity in clinical strains, J. Agric. Food Chem. 58 (2010) 6064-6068.[12] A. Chatzopoulou, A. Karioti, C. Gousiadou, et al., Depsides and other polar constituents from Origanum dictamnus L. and their in vitro antimicrobial activity in clinical strains, J. Agric. Food Chem. 58 (2010) 6064-6068.

    13. [13] C. Delporte, N. Backhouse, et al., Analgesic-antiinflammatory properties of Proustia pyrifolia, J. Ethnopharmacol. 99 (2005) 119-124.[13] C. Delporte, N. Backhouse, et al., Analgesic-antiinflammatory properties of Proustia pyrifolia, J. Ethnopharmacol. 99 (2005) 119-124.

    14. [14] J. She, L.E. Mo, T.B. Kang, Z.J. Song, Liang N.C, Quercetin water-soluble derivatives preparation and biological activity, Chin. J. Med. Chem. 8 (4) (1998) 287-289.[14] J. She, L.E. Mo, T.B. Kang, Z.J. Song, Liang N.C, Quercetin water-soluble derivatives preparation and biological activity, Chin. J. Med. Chem. 8 (4) (1998) 287-289.

    15. [15] K.H. Wong, G.Q. Li, K.M. Li, V.R. Naumovski, K. Chan, Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases, J. Ethnopharmacol. 134 (2011) 584-607.[15] K.H. Wong, G.Q. Li, K.M. Li, V.R. Naumovski, K. Chan, Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases, J. Ethnopharmacol. 134 (2011) 584-607.

    16. [16] S.H. Fan, Z.F. Zhang, Y.L. Zheng, et al., Troxerutin protects the mouse kidney from D-galactose-caused injury through anti-inflammation and anti-oxidation, Int. Immunopharmacol. 9 (2009) 91-96.[16] S.H. Fan, Z.F. Zhang, Y.L. Zheng, et al., Troxerutin protects the mouse kidney from D-galactose-caused injury through anti-inflammation and anti-oxidation, Int. Immunopharmacol. 9 (2009) 91-96.

    17. [17] C.M. Liu, J.Q. Ma, Y. Lou, Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage, Food Chem. Toxicol. 48 (2010) 2809-2817.[17] C.M. Liu, J.Q. Ma, Y. Lou, Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage, Food Chem. Toxicol. 48 (2010) 2809-2817.

    18. [18] A. Celik, O. Ersoy, N. Ozkan, et al., Comparison of the effects of troxerutin and heparinoid on flap necrosis, J Plast. Reconstr. Aesthetic Surg. 63 (2010) 875-883.[18] A. Celik, O. Ersoy, N. Ozkan, et al., Comparison of the effects of troxerutin and heparinoid on flap necrosis, J Plast. Reconstr. Aesthetic Surg. 63 (2010) 875-883.

    19. [19] M.A. Barbacanne, J.P. Souchard, B. Darblade, et al., Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques, Free Radic. Biol. Med. 29 (2000) 388-396.[19] M.A. Barbacanne, J.P. Souchard, B. Darblade, et al., Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques, Free Radic. Biol. Med. 29 (2000) 388-396.

    20. [20] J.M. You, J.T. Lan, Extraction technology of naringin from orange, Modern Food Sci. Technol. 2 (2008) 160-166.[20] J.M. You, J.T. Lan, Extraction technology of naringin from orange, Modern Food Sci. Technol. 2 (2008) 160-166.

    21. [21] T.L. Lin, B.Z. Yan, G.F. Hu, W. Mei, Spectral analysis of AI (11 I)-quercetin complexes, Chin. J. Anal. Chem. 8 (2006) 1125-1128.[21] T.L. Lin, B.Z. Yan, G.F. Hu, W. Mei, Spectral analysis of AI (11 I)-quercetin complexes, Chin. J. Anal. Chem. 8 (2006) 1125-1128.

    22. [22] X.C. Li, Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants, J. Agric. Food Chem. 60 (2012) 6418-6424.[22] X.C. Li, Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants, J. Agric. Food Chem. 60 (2012) 6418-6424.

    23. [23] S.H. Han, J.B. Zhu, Y.Y. Wang, Measurement of the antioxidant activity by pyrogallol autoxidation, China Brewing 207 (6) (2009) 115-157.[23] S.H. Han, J.B. Zhu, Y.Y. Wang, Measurement of the antioxidant activity by pyrogallol autoxidation, China Brewing 207 (6) (2009) 115-157.

    24. [24] Y.M. Xiao, P. Mao, Z.H. Zhao, L.R. Yang, X.F. Lin, Regioselective enzymatic acylation of troxerutin in nonaqueous medium, Chin. Chem. Lett. 21 (2010) 59-62.[24] Y.M. Xiao, P. Mao, Z.H. Zhao, L.R. Yang, X.F. Lin, Regioselective enzymatic acylation of troxerutin in nonaqueous medium, Chin. Chem. Lett. 21 (2010) 59-62.

    25. [25] J.L. Li, M. Zhang, T.S. Zheng, The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction, Food Chem. 115 (2009) 939-944.[25] J.L. Li, M. Zhang, T.S. Zheng, The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction, Food Chem. 115 (2009) 939-944.

    26. [26] J.G. Cao, X. Xia, X.F. Chen, J.B. Xiao, Q.X. Wang, Characterization of flavonoids from dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities, Food Chem. Toxicol. 51 (2013) 242-250.[26] J.G. Cao, X. Xia, X.F. Chen, J.B. Xiao, Q.X. Wang, Characterization of flavonoids from dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities, Food Chem. Toxicol. 51 (2013) 242-250.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1064
  • HTML全文浏览量:  50
文章相关
  • 发布日期:  2013-02-05
  • 收稿日期:  2012-11-12
  • 网络出版日期:  2012-12-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章