Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM

Jing Xu Qing-Dao Zeng

Citation:  Jing Xu, Qing-Dao Zeng. Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM[J]. Chinese Chemical Letters, 2013, 24(3): 177-182. shu

Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM

    通讯作者: Qing-Dao Zeng,
摘要: In this review, a group of two-dimensional (2D) hydrogen-bonded supramolecular networks developed in our laboratory are discussed. Our attention ismainly focused on: (1) recognition of Fe3+ through twocomponent molecular networks; (2) site-selective fabrication of 2D fullerene arrays; and (3) fabrication of the nanoporous structure regulated by photoisomerization reaction process. It is envisioned that special supramolecular nanostructures, through H-bonding interactions, can be constructed or reconstructed to be further investigated toward the research of multi-component systems, molecule recognition, single molecular switches, and host-guest supramolecular chemistry.

English

  • 
    1. [1] J.M. Lehn, Toward self-organization and complex matter, Science 295 (2002) 2400-2403.[1] J.M. Lehn, Toward self-organization and complex matter, Science 295 (2002) 2400-2403.

    2. [2] G.M. Whitesides, B. Grzybowski, Self-assembly at all scales, Science 295 (2002) 2418-2421.[2] G.M. Whitesides, B. Grzybowski, Self-assembly at all scales, Science 295 (2002) 2418-2421.

    3. [3] T. Kudernac, S.B. Lei, J.A.A.W. Elemans, S. De Feyter, Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces, Chem. Soc. Rev. 38 (2009) 402-421.[3] T. Kudernac, S.B. Lei, J.A.A.W. Elemans, S. De Feyter, Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces, Chem. Soc. Rev. 38 (2009) 402-421.

    4. [4] Y.L. Yang, C. Wang, Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy, Chem. Soc. Rev. 38 (2009) 2576-2589.[4] Y.L. Yang, C. Wang, Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy, Chem. Soc. Rev. 38 (2009) 2576-2589.

    5. [5] J.A.A.W. Elemans, S.B. Lei, S. De Feyter, Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity, Angew. Chem. Int. Ed. 48 (2009) 7298-7332.[5] J.A.A.W. Elemans, S.B. Lei, S. De Feyter, Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity, Angew. Chem. Int. Ed. 48 (2009) 7298-7332.

    6. [6] J.V. Barth, G. Costantini, K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature 437 (2005) 671-679.[6] J.V. Barth, G. Costantini, K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature 437 (2005) 671-679.

    7. [7] Q.D. Zeng, C. Wang, Construction of tunable supramolecular networks studied by scanning tunneling microscopy, Sci. China Chem. 53 (2) (2010) 310-317.[7] Q.D. Zeng, C. Wang, Construction of tunable supramolecular networks studied by scanning tunneling microscopy, Sci. China Chem. 53 (2) (2010) 310-317.

    8. [8] J.K. Gimzewski1, C. Joachim, Nanoscale science of single molecules using local probes, Science 283 (1999) 1683-1688.[8] J.K. Gimzewski1, C. Joachim, Nanoscale science of single molecules using local probes, Science 283 (1999) 1683-1688.

    9. [9] S. De Feyter, F.C. De Schryver, Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy, Chem. Soc. Rev. 32 (2003) 139-150.[9] S. De Feyter, F.C. De Schryver, Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy, Chem. Soc. Rev. 32 (2003) 139-150.

    10. [10] T. Yokoyama, S. Yokoyama, T. Kamikado, et al., Selective assembly on a surface of supramolecular aggregates with controlled size and shape, Nature 413 (2001) 619-621.[10] T. Yokoyama, S. Yokoyama, T. Kamikado, et al., Selective assembly on a surface of supramolecular aggregates with controlled size and shape, Nature 413 (2001) 619-621.

    11. [11] M.V. Chumillas, J. Hieulle, T. Mallah, et al., Compact hydrogen-bonded selfassembly of Ni(Ⅱ)-salen derivative investigated using scanning tunneling microscopy, J. Phys. Chem. C 116 (2012) 23404-23407.[11] M.V. Chumillas, J. Hieulle, T. Mallah, et al., Compact hydrogen-bonded selfassembly of Ni(Ⅱ)-salen derivative investigated using scanning tunneling microscopy, J. Phys. Chem. C 116 (2012) 23404-23407.

    12. [12] R. Philipp, N. Markus, K. Angelika, Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface, Small 8 (2012) 2969-2977.[12] R. Philipp, N. Markus, K. Angelika, Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface, Small 8 (2012) 2969-2977.

    13. [13] X. Zhang, T. Chen, H.J. Yan, et al., Engineering of linear molecular nanostructures by a hydrogen-bond-mediated modular and flexible host-guest assembly, ACS Nano 4 (2010) 5685-5692.[13] X. Zhang, T. Chen, H.J. Yan, et al., Engineering of linear molecular nanostructures by a hydrogen-bond-mediated modular and flexible host-guest assembly, ACS Nano 4 (2010) 5685-5692.

    14. [14] C. Thomas, L. Magali, Y.L. Wang, et al., Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110), J. Phys. Chem. A. 111 (2007) 12589-12603.[14] C. Thomas, L. Magali, Y.L. Wang, et al., Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110), J. Phys. Chem. A. 111 (2007) 12589-12603.

    15. [15] K. Müllen, J.P. Rabe, Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work, Acc. Chem. Res. 41 (2008) 511-520.[15] K. Müllen, J.P. Rabe, Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work, Acc. Chem. Res. 41 (2008) 511-520.

    16. [16] Y.H. Qiao, Q.D. Zeng, Z.Y. Tan, et al., Photo-induced organic nanowires from selfassembled monolayers, J. Vac. Sci. Technol. B 20 (2002) 2466-2469.[16] Y.H. Qiao, Q.D. Zeng, Z.Y. Tan, et al., Photo-induced organic nanowires from selfassembled monolayers, J. Vac. Sci. Technol. B 20 (2002) 2466-2469.

    17. [17] A. Miura, S. De Feyter, M.M.S. Abdel-Mottaleb, et al., Light-and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures, Langmuir 19 (2003) 6474-6482.[17] A. Miura, S. De Feyter, M.M.S. Abdel-Mottaleb, et al., Light-and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures, Langmuir 19 (2003) 6474-6482.

    18. [18] D. Bleger, A. Clesielki, P. Samori, S. Hecht, Photo-switching vertically oriented azobenzene self-assembled monolayers at the solid-liquid interface, Chem. Eur. J. 16 (2010) 14256-14260.[18] D. Bleger, A. Clesielki, P. Samori, S. Hecht, Photo-switching vertically oriented azobenzene self-assembled monolayers at the solid-liquid interface, Chem. Eur. J. 16 (2010) 14256-14260.

    19. [19] A. Jinne, L. Yang, J. Liu, et al., Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers, Am. Chem. Soc. 134 (2012) 18526-18529.[19] A. Jinne, L. Yang, J. Liu, et al., Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers, Am. Chem. Soc. 134 (2012) 18526-18529.

    20. [20] A. Ciesielski, S. Lena, S. Masiero, et al., Dynamers at the solid-liquid interface, Angew. Chem. Int. Ed. 49 (2010) 1963-1966.[20] A. Ciesielski, S. Lena, S. Masiero, et al., Dynamers at the solid-liquid interface, Angew. Chem. Int. Ed. 49 (2010) 1963-1966.

    21. [21] M. Lackinger, M. Heckl, A STM perspective on covalent intermolecular coupling reactions on surfaces, J. Phys. D: Appl. Phys. 44 (2011) 464011 (14pp).[21] M. Lackinger, M. Heckl, A STM perspective on covalent intermolecular coupling reactions on surfaces, J. Phys. D: Appl. Phys. 44 (2011) 464011 (14pp).

    22. [22] K.Q. Zhao, P. Hu, B.Q. Wang, et al., Synthesis of mixed tail triphenylene discotic liquid crystals: molecular symmetry and oxygen-atom effect on the stabilization of columnar mesophases, Chin. J. Chem. 25 (2007) 375-381.[22] K.Q. Zhao, P. Hu, B.Q. Wang, et al., Synthesis of mixed tail triphenylene discotic liquid crystals: molecular symmetry and oxygen-atom effect on the stabilization of columnar mesophases, Chin. J. Chem. 25 (2007) 375-381.

    23. [23] Y.B. Li, K. Deng, X.K. Wu, et al., Molecular arrays formed in anisotropically rearranged supramolecular network with molecular substitutional asymmetry, J. Mater. Chem. 20 (2010) 9100-9103.[23] Y.B. Li, K. Deng, X.K. Wu, et al., Molecular arrays formed in anisotropically rearranged supramolecular network with molecular substitutional asymmetry, J. Mater. Chem. 20 (2010) 9100-9103.

    24. [24] R. Singh, A. Banerjee, E. Colacio, Enantiopure tetranuclear iron(Ⅲ) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies, Inorg. Chem. 48 (2009) 4753-4762.[24] R. Singh, A. Banerjee, E. Colacio, Enantiopure tetranuclear iron(Ⅲ) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies, Inorg. Chem. 48 (2009) 4753-4762.

    25. [25] Y.B. Li, K.Q. Zhao, Y.L. Yang, et al., Functionalization of two-component molecular networks: recognition of Fe3+, Nanoscale 4 (2012) 148-151.[25] Y.B. Li, K.Q. Zhao, Y.L. Yang, et al., Functionalization of two-component molecular networks: recognition of Fe3+, Nanoscale 4 (2012) 148-151.

    26. [26] S. Griessl, M. Lackinger, M. Edelwirth, et al., Self-assembled two-dimensional molecular host-guest architectures from trimesic acid, Single Mol. 3 (2002) 25-31.[26] S. Griessl, M. Lackinger, M. Edelwirth, et al., Self-assembled two-dimensional molecular host-guest architectures from trimesic acid, Single Mol. 3 (2002) 25-31.

    27. [27] Z. Ma, Y.Y. Wang, P. Wang, et al., Star-shaped oligofluorenes end-capped with carboxylic groups: syntheses and self-assembly at the liquid-solid interface, ACS Nano. 1 (2007) 160-167.[27] Z. Ma, Y.Y. Wang, P. Wang, et al., Star-shaped oligofluorenes end-capped with carboxylic groups: syntheses and self-assembly at the liquid-solid interface, ACS Nano. 1 (2007) 160-167.

    28. [28] M. Blunt, X. Lin, M.C. Gimenez-Lopez, et al., Directing two-dimensional molecular crystallization using guest templates, Chem. Commun. 20 (2008) 2304-2306.[28] M. Blunt, X. Lin, M.C. Gimenez-Lopez, et al., Directing two-dimensional molecular crystallization using guest templates, Chem. Commun. 20 (2008) 2304-2306.

    29. [29] A. Dmitriev, N. Lin, J. Weckesser, et al., Supramolecular assemblies of trimesic acid on a Cu(1 0 0) Surface, J. Phys. Chem. B 106 (2002) 6907-6912.[29] A. Dmitriev, N. Lin, J. Weckesser, et al., Supramolecular assemblies of trimesic acid on a Cu(1 0 0) Surface, J. Phys. Chem. B 106 (2002) 6907-6912.

    30. [30] S. Furukawa, H. Uji-i, K. Tahara, et al., Molecular geometry directed Kagomé and honeycomb networks: toward two-dimensional crystal engineering, J. Am. Chem. Soc. 128 (2006) 3502-3503.[30] S. Furukawa, H. Uji-i, K. Tahara, et al., Molecular geometry directed Kagomé and honeycomb networks: toward two-dimensional crystal engineering, J. Am. Chem. Soc. 128 (2006) 3502-3503.

    31. [31] H. Zhou, H. Dang, J.H. Yi, et al., Frustrated 2D molecular crystallization, J. Am. Chem. Soc. 129 (2007) 13774-13775.[31] H. Zhou, H. Dang, J.H. Yi, et al., Frustrated 2D molecular crystallization, J. Am. Chem. Soc. 129 (2007) 13774-13775.

    32. [32] H.W. Kroto, J.R. Heath, S.C. OIBrien, et al., C60: Buckminsterfullerene, Nature 318 (1985) 162-163.[32] H.W. Kroto, J.R. Heath, S.C. OIBrien, et al., C60: Buckminsterfullerene, Nature 318 (1985) 162-163.

    33. [33] M. Li, K. Deng, S.B. Lei, et al., Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface, Angew. Chem. Int. Ed. 47 (2008) 6717-6721.[33] M. Li, K. Deng, S.B. Lei, et al., Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface, Angew. Chem. Int. Ed. 47 (2008) 6717-6721.

    34. [34] F.H. Henrich, R.H. Michel, A. Fischer, et al., Fullerenes, Angew. Chem. 108 (1996) 1839-1841.[34] F.H. Henrich, R.H. Michel, A. Fischer, et al., Fullerenes, Angew. Chem. 108 (1996) 1839-1841.

    35. [35] J.M. Campanera, C. Bo, M.M. Olmstead, et al., Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 asdeterminedbydensity functional calculationsand reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHC13), J. Phys. Chem. A. 106 (2002) 12356-12364.[35] J.M. Campanera, C. Bo, M.M. Olmstead, et al., Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 asdeterminedbydensity functional calculationsand reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHC13), J. Phys. Chem. A. 106 (2002) 12356-12364.

    36. [36] N. Henningsen, R. Rurali, K.J. Franke, et al., Trans to cis isomerization of an azobenzene derivative on a Cu (1 0 0) surface, Appl. Phys. A. 93 (2008) 241-246.[36] N. Henningsen, R. Rurali, K.J. Franke, et al., Trans to cis isomerization of an azobenzene derivative on a Cu (1 0 0) surface, Appl. Phys. A. 93 (2008) 241-246.

    37. [37] A.S. Kumar, T. Ye, T. Takami, et al., Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments, Nano Lett. 8 (6) (2008) 1644-1648.[37] A.S. Kumar, T. Ye, T. Takami, et al., Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments, Nano Lett. 8 (6) (2008) 1644-1648.

    38. [38] J. Lu, et al., Template-induced inclusion structures with copper (Ⅱ) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks, J. Phys. Chem. B 108 (2004) 5161-5165.[38] J. Lu, et al., Template-induced inclusion structures with copper (Ⅱ) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks, J. Phys. Chem. B 108 (2004) 5161-5165.

    39. [39] R. Tamaoki, K. Ogata, K. Koseki, et al., [2.2] (4,40) Azobenzenophane synthesis, structure, and cis-trans isomerization, Tetrahedron 46 (1990) 5931-5942.[39] R. Tamaoki, K. Ogata, K. Koseki, et al., [2.2] (4,40) Azobenzenophane synthesis, structure, and cis-trans isomerization, Tetrahedron 46 (1990) 5931-5942.

    40. [40] S. Shinkai, T. Minami, Y. Kasano, et al., Photoresponsive crown ethers. 8. Azobenzenophane-type switched-on crown ethers which exhibit an all-ornothing change in ion-binding ability, J. Am. Chem. Soc. 105 (1983) 1851-1856.[40] S. Shinkai, T. Minami, Y. Kasano, et al., Photoresponsive crown ethers. 8. Azobenzenophane-type switched-on crown ethers which exhibit an all-ornothing change in ion-binding ability, J. Am. Chem. Soc. 105 (1983) 1851-1856.

    41. [41] Y.T. Shen, L. Guan, X.Y. Zhu, et al., Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network, J. Am. Chem. Soc. 131 (17) (2009) 6174-6180.[41] Y.T. Shen, L. Guan, X.Y. Zhu, et al., Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network, J. Am. Chem. Soc. 131 (17) (2009) 6174-6180.

    42. [42] X.M. Zhang, S. Wang, Y.T. Shen, et al., Two-dimensional networks of an azobenzene derivative: bi-pyridine mediation and photo regulation, Nanoscale 4 (2012) 5039-5042.[42] X.M. Zhang, S. Wang, Y.T. Shen, et al., Two-dimensional networks of an azobenzene derivative: bi-pyridine mediation and photo regulation, Nanoscale 4 (2012) 5039-5042.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  976
  • HTML全文浏览量:  7
文章相关
  • 发布日期:  2013-03-07
  • 收稿日期:  2012-12-28
  • 网络出版日期:  2013-01-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章