
Citation: NIE Long-Hui, TAN Qiao, ZHU Wei, WEI Qi, LIN Zhi-Kui. Fast Adsorption Removal of Con Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method[J]. Acta Physico-Chimica Sinica, 2015, 31(9): 1815-1822. doi: 10.3866/PKU.WHXB201507201

分级多孔 γ-Al2O3空心微球微波水热法制备及其对刚果红的快速吸附
以KAl(SO4)2和尿素为前驱体, 通过微波水热法于180 ℃反应20 min, 经600 ℃ 焙烧2 h制得分级多孔γ-Al2O3空心微球. 所制备的样品被用于吸附典型有机染料刚果红(CR)溶液. 结果表明, 制备的γ-Al2O3空心微球直径为0.8-1.0 μm, 厚度约为200 nm. 此γ-Al2O3空心微球具有高的比表面积(243 m2·g-1)和分级大孔-中孔结构,此结构非常有利于液相过程中的质量传递. 微波水热法制备的γ-Al2O3空心微球比水热法制备的γ-Al2O3和商用的γ-Al2O3样品显示出更快和更强的吸附性能. 此样品的吸附数据很好地符合假二级速率方程和Langmuir吸附理论模型. 从Langmuir吸附理论模型计算得到微波水热法制备的γ-Al2O3空心微球的最大吸附量(qmax) 25 ℃时高达 515.4 mg·g-1. 由于具有分等级结构、高比表面积、大的孔容和吸附能力, 微波水热法制备的γ-Al2O3空心微球样品有望成为一种具有很好应用潜力的环境吸附剂.
English
Fast Adsorption Removal of Con Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method
Hierarchical nanostructured γ-Al2O3 hollow microspheres were synthesized from KAl(SO4)2 and urea precursors by the microwave-assisted hydrothermal (MAH) method at 180 ℃ for 20 min followed by calcination at 600 ℃ for 2 h. The as-prepared sample was used to remove the organic dye Con red (CR) from aqueous solution. The results showed that the obtained γ-Al2O3 hollow microspheres are about 0.8-1.0 μm in diameter with a shell thickness of approximately 200 nm. The γ-Al2O3 hollow microspheres have a high surface area of 243 m2·g-1 and a hierarchical meso-macroporous structure, which is beneficial for mass transfer in liquid processes. Therefore, the prepared γ-Al2O3 hollow microspheres exhibit faster adsorption and enhanced adsorption performance for CR than particles prepared by the hydrothermal method and commercial γ-Al2O3. The adsorption kinetic data follow the pseudo-second-order equation and the equilibrium data fit well to the Langmuir model. The maximum adsorption capacity (qmax) of the obtained γ-Al2O3 hollow microspheres calculated by the Langmuir model is up to 515.4 mg·g-1 at 25 ℃. The γ-Al2O3 hollow microspheres prepared by the microwave-assisted hydrotherm method show promise as an adsorbent for environmental applications due to their hierarchical porous structure, high surface area, large pore volume, and adsorption capacity.
-
Key words:
-
Hierarchically porous material
- / γ-Al2O3
- / Con red
- / Adsorption kinetics
-
-
[1]
(1) Jalil, A. A.; Triwahyono, S.; Adam, S. H.; Rahim, N. D.; Aziz, M. A.; Hairom, N. H.; Razali, N. A.; Abidin, M. A.; Mohamadiah, M. K. J. Hazard. Mater. 2010, 181, 755. doi: 10.1016/j.jhazmat.2010.05.078
(1) Jalil, A. A.; Triwahyono, S.; Adam, S. H.; Rahim, N. D.; Aziz, M. A.; Hairom, N. H.; Razali, N. A.; Abidin, M. A.; Mohamadiah, M. K. J. Hazard. Mater. 2010, 181, 755. doi: 10.1016/j.jhazmat.2010.05.078
-
[2]
(2) Vimonsesa, V.; Lei, S.; Ji, B.; Chowd, C. W. K.; Saint, C. Chem. Eng. J. 2009, 148, 354. doi: 10.1016/j.cej.2008.09.009(2) Vimonsesa, V.; Lei, S.; Ji, B.; Chowd, C. W. K.; Saint, C. Chem. Eng. J. 2009, 148, 354. doi: 10.1016/j.cej.2008.09.009
-
[3]
(3) Asencios, Y. J. O.; Sun-Kou, M. R. Appl. Surf. Sci. 2012, 258, 10002. doi: 10.1016/j.apsusc.2012.06.063(3) Asencios, Y. J. O.; Sun-Kou, M. R. Appl. Surf. Sci. 2012, 258, 10002. doi: 10.1016/j.apsusc.2012.06.063
-
[4]
(4) Cai, W. Q.; Yu, J. G.; Jaroniec, M. J. Mater. Chem. 2010, 20, 4587. doi: 10.1039/b924366f(4) Cai, W. Q.; Yu, J. G.; Jaroniec, M. J. Mater. Chem. 2010, 20, 4587. doi: 10.1039/b924366f
-
[5]
(5) Xu, J. S.; Zhu, Y. J. J. Colloid Interface Sci. 2012, 385, 58. doi: 10.1016/j.jcis.2012.06.082(5) Xu, J. S.; Zhu, Y. J. J. Colloid Interface Sci. 2012, 385, 58. doi: 10.1016/j.jcis.2012.06.082
-
[6]
(6) Fei, J. B.; Cui, Y.; Zhao, J.; Gao, L.; Yang, Y.; Li, J. B. J. Mater. Chem. 2011, 21, 11742. doi: 10.1039/c1jm11950h(6) Fei, J. B.; Cui, Y.; Zhao, J.; Gao, L.; Yang, Y.; Li, J. B. J. Mater. Chem. 2011, 21, 11742. doi: 10.1039/c1jm11950h
-
[7]
(7) Yu, C.; Dong, X.; Guo, L.; Li, J.; Qin, F.; Zhang, L. Z.; Shi, J.; Yan, D. J. Phys. Chem. C 2008, 112, 13378. doi: 10.1021/jp8044466(7) Yu, C.; Dong, X.; Guo, L.; Li, J.; Qin, F.; Zhang, L. Z.; Shi, J.; Yan, D. J. Phys. Chem. C 2008, 112, 13378. doi: 10.1021/jp8044466
-
[8]
(8) Ai, L.; Zeng, Y.; Jiang, J. Chem. Eng. J. 2014, 235, 331. doi: 10.1016/j.cej.2013.09.046(8) Ai, L.; Zeng, Y.; Jiang, J. Chem. Eng. J. 2014, 235, 331. doi: 10.1016/j.cej.2013.09.046
-
[9]
(9) Hu, J.; Song, Z.; Chen, L.; Yang, H.; Li, J.; Richards, R. J. Chem. Eng. Data 2010, 55, 3742. doi: 10.1021/je100274e(9) Hu, J.; Song, Z.; Chen, L.; Yang, H.; Li, J.; Richards, R. J. Chem. Eng. Data 2010, 55, 3742. doi: 10.1021/je100274e
-
[10]
(10) Yang, Z.; Wei, J.; Yang, H.; Liu, L.; Liang, H.; Yang, Y. Eur. J. Inorg. Chem. 2010, 5, 3354.(10) Yang, Z.; Wei, J.; Yang, H.; Liu, L.; Liang, H.; Yang, Y. Eur. J. Inorg. Chem. 2010, 5, 3354.
-
[11]
(11) Ai, L.; Zeng, Y. Chem. Eng. J. 2013, 215-216, 269.(11) Ai, L.; Zeng, Y. Chem. Eng. J. 2013, 215-216, 269.
-
[12]
(12) Fei, J.; Cui, Y.; Yan, X.; Qi, W.; Yang, Y.; Wang, K.; He, Q.; Li, J. Adv. Mater. 2008, 20, 452.(12) Fei, J.; Cui, Y.; Yan, X.; Qi, W.; Yang, Y.; Wang, K.; He, Q.; Li, J. Adv. Mater. 2008, 20, 452.
-
[13]
(13) Cai, W. Q.; Hu, Y. Z.; Chen, J.; Zhang, G. X.; Xia, T. Cryst. Eng. Commun. 2012, 14, 972. doi: 10.1039/C1CE05975K(13) Cai, W. Q.; Hu, Y. Z.; Chen, J.; Zhang, G. X.; Xia, T. Cryst. Eng. Commun. 2012, 14, 972. doi: 10.1039/C1CE05975K
-
[14]
(14) Zhang, C.; Zhang, H.; Du, B.; Hou, R.; Guo, S. J. Colloid Interface Sci. 2012, 368, 97. doi: 10.1016/j.jcis.2011.10.056(14) Zhang, C.; Zhang, H.; Du, B.; Hou, R.; Guo, S. J. Colloid Interface Sci. 2012, 368, 97. doi: 10.1016/j.jcis.2011.10.056
-
[15]
(15) Kong, L.; Lu, X.; Bian, X.; Zhang, W.; Wang, C. J. Solid State Chem. 2010, 183, 2421. doi: 10.1016/j.jssc.2010.08.005(15) Kong, L.; Lu, X.; Bian, X.; Zhang, W.; Wang, C. J. Solid State Chem. 2010, 183, 2421. doi: 10.1016/j.jssc.2010.08.005
-
[16]
(16) Nie, L. H.; Meng, A. Y.; Yu, J. G.; Jaroniec, M. Scientific Reports 2013, 3, 3215.(16) Nie, L. H.; Meng, A. Y.; Yu, J. G.; Jaroniec, M. Scientific Reports 2013, 3, 3215.
-
[17]
(17) Cai, W. Q.; Yu, J. G.; Mann, S. Microporous Mesoporous Mat. 2009, 122, 42. doi: 10.1016/j.micromeso.2009.02.003(17) Cai, W. Q.; Yu, J. G.; Mann, S. Microporous Mesoporous Mat. 2009, 122, 42. doi: 10.1016/j.micromeso.2009.02.003
-
[18]
(18) Wu, X. Y.; Zhang, B. Q.; Hu, Z. S. Mater. Lett. 2012, 73, 169. doi: 10.1016/j.matlet.2012.01.050(18) Wu, X. Y.; Zhang, B. Q.; Hu, Z. S. Mater. Lett. 2012, 73, 169. doi: 10.1016/j.matlet.2012.01.050
-
[19]
(19) Wu, X. Y.; Wang, D. B.; Hu, Z. S.; Gu, G. H. Mater. Chem. Phys. 2008, 109, 560. doi: 10.1016/j.matchemphys.2008.01.004(19) Wu, X. Y.; Wang, D. B.; Hu, Z. S.; Gu, G. H. Mater. Chem. Phys. 2008, 109, 560. doi: 10.1016/j.matchemphys.2008.01.004
-
[20]
(20) Cai, W. Q.; Yu, J. G.; Cheng, B.; Su, B. L.; Jaroniec, M. J. Phys. Chem. C 2009, 113, 14739. doi: 10.1021/jp904570z(20) Cai, W. Q.; Yu, J. G.; Cheng, B.; Su, B. L.; Jaroniec, M. J. Phys. Chem. C 2009, 113, 14739. doi: 10.1021/jp904570z
-
[21]
(21) Feng, Y.; Zhang, L.; Gu, G. H.; Hu, Z. S. Rare Metal Mat. Eng. 2007, 36, 134.(21) Feng, Y.; Zhang, L.; Gu, G. H.; Hu, Z. S. Rare Metal Mat. Eng. 2007, 36, 134.
-
[22]
(22) Ren, T. Z.; Yuan, Z. Y.; Su, B. L. Langmuir 2004, 20, 1531. doi: 10.1021/la0361767(22) Ren, T. Z.; Yuan, Z. Y.; Su, B. L. Langmuir 2004, 20, 1531. doi: 10.1021/la0361767
-
[23]
(23) Nie, L.; Deng, K.; Yuan, S.; Zhang, W.; Tan, Q. Mater. Lett. 2014, 132, 369. doi: 10.1016/j.matlet.2014.06.095(23) Nie, L.; Deng, K.; Yuan, S.; Zhang, W.; Tan, Q. Mater. Lett. 2014, 132, 369. doi: 10.1016/j.matlet.2014.06.095
-
[24]
(24) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.(24) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
-
[25]
(25) Zhao, X.; Wang, W.; Zhang, Y.; Wu, S.; Li, F.; Liu, J. P. Chem. Eng. J. 2014, 250, 164. doi: 10.1016/j.cej.2014.03.113(25) Zhao, X.; Wang, W.; Zhang, Y.; Wu, S.; Li, F.; Liu, J. P. Chem. Eng. J. 2014, 250, 164. doi: 10.1016/j.cej.2014.03.113
-
[26]
(26) Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Chem. Eng. J. 2012, 181-182, 72.(26) Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Chem. Eng. J. 2012, 181-182, 72.
-
[27]
(27) Lan, S.; Guo, N.; Liu, L.; Wu, X.; Li, L.; Gan, S. Appl. Surf. Sci. 2013, 283, 1032. doi: 10.1016/j.apsusc.2013.07.064(27) Lan, S.; Guo, N.; Liu, L.; Wu, X.; Li, L.; Gan, S. Appl. Surf. Sci. 2013, 283, 1032. doi: 10.1016/j.apsusc.2013.07.064
-
[28]
(28) Zhang, L.; Lian, J.; Wang, L.; Jiang, J.; Duan, Z.; Zhao, L. Chem. Eng. J. 2014, 241, 384. doi: 10.1016/j.cej.2013.10.071(28) Zhang, L.; Lian, J.; Wang, L.; Jiang, J.; Duan, Z.; Zhao, L. Chem. Eng. J. 2014, 241, 384. doi: 10.1016/j.cej.2013.10.071
-
[29]
(29) Lorenc-Grabowska, E.; Gryglewicz, G. Dyes and Pigments 2007, 74, 34. doi: 10.1016/j.dyepig.2006.01.027(29) Lorenc-Grabowska, E.; Gryglewicz, G. Dyes and Pigments 2007, 74, 34. doi: 10.1016/j.dyepig.2006.01.027
-
[30]
(30) Du, Q.; Sun, J.; Li, Y.; Yang, X.; Wang, X.; Wang, Z.; Xia, L. Chem. Eng. J. 2014, 245, 99. doi: 10.1016/j.cej.2014.02.006
(30) Du, Q.; Sun, J.; Li, Y.; Yang, X.; Wang, X.; Wang, Z.; Xia, L. Chem. Eng. J. 2014, 245, 99. doi: 10.1016/j.cej.2014.02.006
-
[1]
-

计量
- PDF下载量: 212
- 文章访问数: 861
- HTML全文浏览量: 12