
Citation: XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 913-919. doi: 10.3866/PKU.WHXB201503162

还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能
二氧化钛(TiO2)作为有前景的钠离子电池负极材料, 具有良好的循环稳定性, 但由于其导电率较低, 而导致容量和倍率性能不佳限制了其实际应用. 本文采用喷雾干燥技术制备了氧化石墨烯/纳米TiO2复合材料( /TiO2), 通过热处理获得还原氧化石墨烯/TiO2复合材料(R /TiO2). 电化学测试结果表明, 还原氧化石墨烯改性的R /TiO2复合材料的电化学性能得到显著提升, R 含量为4.0%(w)的R /TiO2复合材料在各种电流密度下的可逆容量分别为183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1)和114.4 mAh·g-1 (600mA·g-1), 而纯TiO2的比容量仅为93.6 mAh·g-1 (20 mA·g-1), 69.6 mAh·g-1 (100 mA·g-1)和26.5 mAh·g-1 (600mA·g-1). 4.0%(w) R /TiO2复合材料体现了良好的循环稳定性, 在100 mA·g-1电流密度下充放电循环350个周期后, 比容量仍然保持146.7 mAh·g-1. 同等条件下, 纯TiO2电极比容量只有68.8 mAh·g-1. R 包覆改性极大提高了TiO2在钠离子电池中的电化学嵌钠/脱钠性能. R 包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.
English
Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries
Anatase TiO2 shows excellent long-term cycling stability as an anode for sodium-ion batteries. However, the low specific capacity and poor rate capability resulting from its intrinsic low electrical conductivity limit its applications. In this work, TiO2 nanoparticles were coated with reduced graphene oxide (R ) using a combination of spray-drying and heat treatment. Electrochemical tests showed that the obtained R /TiO2 composites had improved electrochemical performances. The reversible capacities of the R /TiO2 [4.0% (w)] composites were 183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1), and 114.4 mAh·g-1 (600 mA·g-1). Bare TiO2 showed low capacities of 93.6mAh·g-1 (20mA·g-1), 69.6mAh·g-1 (100mA·g-1), and 26.5mAh·g-1 (600 mA·g-1). The 4.0%(w) TiO2/R composites exhibited od cycling stability with a charge capacity of 146.7 mAh·g-1 at a current density of 100 mA·g-1 after 350 cycles, compared with 68.8 mAh·g-1 for bare TiO2. R modification is a promising method for improving the electrochemical performances of the sodium energystorage materials.
-
Key words:
-
Titanium dioxide
- / Reduced graphene oxide
- / Anode material
- / Sodium ion battery
-
-
[1]
(1) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
(1) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
-
[2]
(2) Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g(2) Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g
-
[3]
(3) Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.(3) Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.
-
[4]
(4) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero- nzález, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j(4) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero- nzález, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
-
[5]
(5) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8(5) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8
-
[6]
(6) Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Commun. 2001, 3, 639. doi: 10.1016/S1388-2481(01)00244-2(6) Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Commun. 2001, 3, 639. doi: 10.1016/S1388-2481(01)00244-2
-
[7]
(7) Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem. Solid-State Lett. 2005, 8, A222.(7) Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem. Solid-State Lett. 2005, 8, A222.
-
[8]
(8) Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. J. Electrochem. Soc. 1993, 140, L169.(8) Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. J. Electrochem. Soc. 1993, 140, L169.
-
[9]
(9) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 1271. doi: 10.1149/1.1393348(9) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 1271. doi: 10.1149/1.1393348
-
[10]
(10) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A803.(10) Stevens, D.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A803.
-
[11]
(11) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a(11) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/c1ee01782a
-
[12]
(12) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. RSC Adv. 2013, 3, 12593. doi: 10.1039/c3ra42413h(12) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. RSC Adv. 2013, 3, 12593. doi: 10.1039/c3ra42413h
-
[13]
(13) Kavan, L.; Kratochvilová, K.; Grätzel, M. J. Electroanal. Chem. 1995, 394, 93. doi: 10.1016/0022-0728(95)03976-N(13) Kavan, L.; Kratochvilová, K.; Grätzel, M. J. Electroanal. Chem. 1995, 394, 93. doi: 10.1016/0022-0728(95)03976-N
-
[14]
(14) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g(14) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g
-
[15]
(15) Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z.W.; Kohandehghan, A.; Mitlin, D. Chem. Commun. 2013, 49, 8973. doi: 10.1039/c3cc45254a(15) Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z.W.; Kohandehghan, A.; Mitlin, D. Chem. Commun. 2013, 49, 8973. doi: 10.1039/c3cc45254a
-
[16]
(16) Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 650.(16) Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 650.
-
[17]
(17) Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070. doi: 10.1039/c2cc32730a(17) Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070. doi: 10.1039/c2cc32730a
-
[18]
(18) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e(18) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e
-
[19]
(19) Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Adv. Mater. 2012, 24, 3562. doi: 10.1002/adma.201201205(19) Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Adv. Mater. 2012, 24, 3562. doi: 10.1002/adma.201201205
-
[20]
(20) Zhu, L.; Niu, Y.; Cao, Y.; Lei, A.; Ai, X.; Yang, H. Electrochim. Acta 2012, 78, 27. doi: 10.1016/j.electacta.2012.05.152(20) Zhu, L.; Niu, Y.; Cao, Y.; Lei, A.; Ai, X.; Yang, H. Electrochim. Acta 2012, 78, 27. doi: 10.1016/j.electacta.2012.05.152
-
[21]
(21) Zhao, L.; Zhao, J.; Hu, Y. S.; Li, H.; Zhou, Z.; Armand, M.; Chen, L. Adv. Energy Mater. 2012, 2, 962. doi: 10.1002/aenm.v2.8(21) Zhao, L.; Zhao, J.; Hu, Y. S.; Li, H.; Zhou, Z.; Armand, M.; Chen, L. Adv. Energy Mater. 2012, 2, 962. doi: 10.1002/aenm.v2.8
-
[22]
(22) Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017(22) Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[23]
(23) Dambournet, D.; Belharouak, I.; Amine, K. Chem. Mater. 2009, 22, 1173.(23) Dambournet, D.; Belharouak, I.; Amine, K. Chem. Mater. 2009, 22, 1173.
-
[24]
(24) Wagemaker, M.; van de Krol, R.; Kentgens, A. P.; VanWell, A. A.; Mulder, F. M. J. Am. Chem. Soc. 2001, 123, 11454. doi: 10.1021/ja0161148
(24) Wagemaker, M.; van de Krol, R.; Kentgens, A. P.; VanWell, A. A.; Mulder, F. M. J. Am. Chem. Soc. 2001, 123, 11454. doi: 10.1021/ja0161148
-
[1]
-

计量
- PDF下载量: 346
- 文章访问数: 759
- HTML全文浏览量: 52