原位共沉淀法制备Ni-Mg-Al-LDHs/γ-Al2O3催化前驱体在甲烷二氧化碳重整反应体系中的性能评价

张晓晴 徐艳 杨春辉 张燕平 印永祥 尚书勇

引用本文: 张晓晴, 徐艳, 杨春辉, 张燕平, 印永祥, 尚书勇. 原位共沉淀法制备Ni-Mg-Al-LDHs/γ-Al2O3催化前驱体在甲烷二氧化碳重整反应体系中的性能评价[J]. 物理化学学报, 2015, 31(5): 948-954. doi: 10.3866/PKU.WHXB201503111 shu
Citation:  ZHANG Xiao-Qing, XU Yan YAN, YANG Chun-Hui, ZHANG Yan-Ping, YIN Yong-Xiang, SHANG Shu-Yong. In-situ Co-Precipitation of Ni-Mg-Al-LDH Catalytic Precursor on γ-Al2O3 for Dry Reforming of Methane: Synthesis and Evaluation[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 948-954. doi: 10.3866/PKU.WHXB201503111 shu

原位共沉淀法制备Ni-Mg-Al-LDHs/γ-Al2O3催化前驱体在甲烷二氧化碳重整反应体系中的性能评价

  • 基金项目:

    国家自然科学基金(11075113) (11075113)

    四川省科技基金(2012GZ0114)资助项目 (2012GZ0114)

摘要:

通过原位共沉淀的方法在γ-Al2O3表面上合成了Ni-Mg-Al-LDHs (水滑石), 合成的Ni-Mg-Al-LDHs/γ-Al2O3作为催化前驱体经过不同的热处理还原方式得到催化剂Cat-1、Cat-2和Cat-3. 用X射线衍射(XRD)、透射电镜(TEM)、N2吸附-脱附测试(BET)以及热重-差热分析(TG-DTA)对催化剂的形貌结构和抗积碳能力进行了表征测试; 通过甲烷二氧化碳重整反应体系对催化剂的反应活性和稳定性进行了评价. 结果表明催化剂前驱体的预处理方式对催化剂的反应性能具有较大的影响. Ni-Mg-Al-LDHs/γ-Al2O3 直接经过H2/Ar 常压高频冷等离子体炬的分解还原所获得的催化剂Cat-3 表现出了最佳的催化活性和稳定性. TEM表征表明催化活性组分在Cat-3上的分散性更好, 颗粒粒径更小. BET结果证明Cat-3具备较大的比表面积(195.8 m2·g-1). Ni-Mg-Al 水滑石的结构赋予了催化剂活性组分在载体γ-Al2O3上均匀的分散性, 同时常压高频冷等离体炬对催化剂的表面结构以及活性组分的还原具有进一步的优化作用, 两者的协同作用使Ni-Mg-Al-LDHs/γ-Al2O3在甲烷二氧化碳反应体系中具备优良的催化活性和抗积碳性能.

English

    1. [1]

      (1) Tao, X. M.; Bai, M. G.; Li, X. A.; Long, H. L.; Shang, S. Y.; Yin, Y. X.; Dai, X. Y. Prog. Energy Combust. Sci. 2011, 37, 113. doi: 10.1016/j.pecs.2010.05.001

      (1) Tao, X. M.; Bai, M. G.; Li, X. A.; Long, H. L.; Shang, S. Y.; Yin, Y. X.; Dai, X. Y. Prog. Energy Combust. Sci. 2011, 37, 113. doi: 10.1016/j.pecs.2010.05.001

    2. [2]

      (2) Brock, S. L.; Shimojo, T.; Suib, S. L.; Hayashi, Y.; Matsumoto, H. Research on Chemical Intermediates 2002, 28, 13. doi: 10.1163/156856702760129465(2) Brock, S. L.; Shimojo, T.; Suib, S. L.; Hayashi, Y.; Matsumoto, H. Research on Chemical Intermediates 2002, 28, 13. doi: 10.1163/156856702760129465

    3. [3]

      (3) Bradford, M. C. J.; Vannice, M. A. Catal. Rev.-Sci. Eng. 1999, 41, 1. doi: 10.1081/CR-100101948(3) Bradford, M. C. J.; Vannice, M. A. Catal. Rev.-Sci. Eng. 1999, 41, 1. doi: 10.1081/CR-100101948

    4. [4]

      (4) Liu, D.; Wang, Y.; Shi, D.; Jia, X.; Wang, X.; Borgna, A.; Lau, R.; Yang, Y. International Journal of Hydrogen Energy 2012, 37, 10135. doi: 10.1016/j.ijhydene.2012.03.158(4) Liu, D.; Wang, Y.; Shi, D.; Jia, X.; Wang, X.; Borgna, A.; Lau, R.; Yang, Y. International Journal of Hydrogen Energy 2012, 37, 10135. doi: 10.1016/j.ijhydene.2012.03.158

    5. [5]

      (5) Son, I. H.; Lee, S. J.; Soon, A.; Roh, H. S.; Lee, H. Applied Catalysis B-Environmental 2013, 134, 103.(5) Son, I. H.; Lee, S. J.; Soon, A.; Roh, H. S.; Lee, H. Applied Catalysis B-Environmental 2013, 134, 103.

    6. [6]

      (6) Enger, B. C.; Lodeng, R.; Holmen, A. Applied Catalysis AGeneral 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018(6) Enger, B. C.; Lodeng, R.; Holmen, A. Applied Catalysis AGeneral 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018

    7. [7]

      (7) Lin, J. J.; Chan, Y. N.; Lan, Y. F. Materials 2010, 3, 2588. doi: 10.3390/ma3042588(7) Lin, J. J.; Chan, Y. N.; Lan, Y. F. Materials 2010, 3, 2588. doi: 10.3390/ma3042588

    8. [8]

      (8) Guo, Z. L.; Huang, L. Q.; Chu, W.; Luo, S. Z. Acta Physico- Chimica Sinica 2014, 30, 723. [郭章龙, 黄丽琼, 储伟, 罗仕忠. 物理化学学报, 2014, 30, 723.] doi: 10.3866/PKU.WHXB201402242(8) Guo, Z. L.; Huang, L. Q.; Chu, W.; Luo, S. Z. Acta Physico- Chimica Sinica 2014, 30, 723. [郭章龙, 黄丽琼, 储伟, 罗仕忠. 物理化学学报, 2014, 30, 723.] doi: 10.3866/PKU.WHXB201402242

    9. [9]

      (9) Zumreoglu-Karan, B.; Ay, A. N. Chem. Pap. 2012, 66, 1. doi: 10.2478/s11696-011-0100-8(9) Zumreoglu-Karan, B.; Ay, A. N. Chem. Pap. 2012, 66, 1. doi: 10.2478/s11696-011-0100-8

    10. [10]

      (10) Tonelli, D.; Scavetta, E.; Giorgetti, M. Anal. Bioanal. Chem. 2013, 405, 603. doi: 10.1007/s00216-012-6586-2(10) Tonelli, D.; Scavetta, E.; Giorgetti, M. Anal. Bioanal. Chem. 2013, 405, 603. doi: 10.1007/s00216-012-6586-2

    11. [11]

      (11) h, K. H.; Lim, T. T.; Dong, Z. Water Res. 2008, 42, 1343. doi: 10.1016/j.watres.2007.10.043(11) h, K. H.; Lim, T. T.; Dong, Z. Water Res. 2008, 42, 1343. doi: 10.1016/j.watres.2007.10.043

    12. [12]

      (12) Takehira, K.; Shishido, T.; Wang, P.; Kosaka, T.; Takaki, K. Journal of Catalysis 2004, 221, 43. doi: 10.1016/j.jcat.2003.07.001(12) Takehira, K.; Shishido, T.; Wang, P.; Kosaka, T.; Takaki, K. Journal of Catalysis 2004, 221, 43. doi: 10.1016/j.jcat.2003.07.001

    13. [13]

      (13) Bhattacharyya, A.; Chang, V.W.; Schumacher, D. J. Applied Clay Science 1998, 13, 317. doi: 10.1016/S0169-1317(98)00030-1(13) Bhattacharyya, A.; Chang, V.W.; Schumacher, D. J. Applied Clay Science 1998, 13, 317. doi: 10.1016/S0169-1317(98)00030-1

    14. [14]

      (14) Tsyganok, A. I.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Takehira, K.; Hayakawa, T. Journal of Catalysis 2003, 213, 191. doi: 10.1016/S0021-9517(02)00047-7(14) Tsyganok, A. I.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Takehira, K.; Hayakawa, T. Journal of Catalysis 2003, 213, 191. doi: 10.1016/S0021-9517(02)00047-7

    15. [15]

      (15) Long, H.; Xu, Y.; Zhang, X.; Hu, S.; Shang, S.; Yin, Y.; Dai, X. Journal of Energy Chemistry 2013, 22, 733. doi: 10.1016/S2095-4956(13)60097-2(15) Long, H.; Xu, Y.; Zhang, X.; Hu, S.; Shang, S.; Yin, Y.; Dai, X. Journal of Energy Chemistry 2013, 22, 733. doi: 10.1016/S2095-4956(13)60097-2

    16. [16]

      (16) Gennequin, C.; Safariamin, M.; Siffert, S.; Aboukais, A.; Abi- Aad, E. Catalysis Today 2011, 176, 139. doi: 10.1016/j.cattod.2011.01.029(16) Gennequin, C.; Safariamin, M.; Siffert, S.; Aboukais, A.; Abi- Aad, E. Catalysis Today 2011, 176, 139. doi: 10.1016/j.cattod.2011.01.029

    17. [17]

      (17) Wang, Q.; Ren, W.; Yuan, X.; Mu, R.; Song, Z.; Wang, X. International Journal of Hydrogen Energy 2012, 37, 11488. doi: 10.1016/j.ijhydene.2012.05.010(17) Wang, Q.; Ren, W.; Yuan, X.; Mu, R.; Song, Z.; Wang, X. International Journal of Hydrogen Energy 2012, 37, 11488. doi: 10.1016/j.ijhydene.2012.05.010

    18. [18]

      (18) nzalez, A. R.; Asencios, Y. J. O.; Assaf, E. M.; Assaf, J. M. Appl. Surf. Sci. 2013, 280, 876. doi: 10.1016/j.apsusc.2013.05.082(18) nzalez, A. R.; Asencios, Y. J. O.; Assaf, E. M.; Assaf, J. M. Appl. Surf. Sci. 2013, 280, 876. doi: 10.1016/j.apsusc.2013.05.082

    19. [19]

      (19) Wang, J.; Fan, G. L.; Wang, H.; Li, F. Ind. Eng. Chem. Res. 2011, 50, 13717. doi: 10.1021/ie2015087(19) Wang, J.; Fan, G. L.; Wang, H.; Li, F. Ind. Eng. Chem. Res. 2011, 50, 13717. doi: 10.1021/ie2015087

    20. [20]

      (20) Gabrovska, M.; Edreva-Kardjieva, R.; Crisan, D.; Tzvetkov, P.; Shopska, M.; Shtereva, I. React. Kinet. Mech. Catal. 2012, 105, 79. doi: 10.1007/s11144-011-0378-0(20) Gabrovska, M.; Edreva-Kardjieva, R.; Crisan, D.; Tzvetkov, P.; Shopska, M.; Shtereva, I. React. Kinet. Mech. Catal. 2012, 105, 79. doi: 10.1007/s11144-011-0378-0

    21. [21]

      (21) Wang, Q.; Zhang, X.; Zhu, J.; Guo, Z.; O'Hare, D. Chemical Communications 2012, 48, 7450. doi: 10.1039/c2cc32708b(21) Wang, Q.; Zhang, X.; Zhu, J.; Guo, Z.; O'Hare, D. Chemical Communications 2012, 48, 7450. doi: 10.1039/c2cc32708b

    22. [22]

      (22) Liu, Z.; Zhou, J.; Cao, K.; Yang, W.; Gao, H.; Wang, Y.; Li, H. Applied Catalysis B-Environmental 2012, 125, 324. doi: 10.1016/j.apcatb.2012.06.003(22) Liu, Z.; Zhou, J.; Cao, K.; Yang, W.; Gao, H.; Wang, Y.; Li, H. Applied Catalysis B-Environmental 2012, 125, 324. doi: 10.1016/j.apcatb.2012.06.003

    23. [23]

      (23) Kathiraser, Y.; Thitsartarn, W.; Sutthiumporn, K.; Kawi, S. Journal of Physical Chemistry C 2013, 117, 8120. doi: 10.1021/jp401855x(23) Kathiraser, Y.; Thitsartarn, W.; Sutthiumporn, K.; Kawi, S. Journal of Physical Chemistry C 2013, 117, 8120. doi: 10.1021/jp401855x

    24. [24]

      (24) Hou, Z. Y.; Yashima, T. Applied Catalysis A-General 2004, 261, 205. doi: 10.1016/j.apcata.2003.11.002(24) Hou, Z. Y.; Yashima, T. Applied Catalysis A-General 2004, 261, 205. doi: 10.1016/j.apcata.2003.11.002

    25. [25]

      (25) Nazemi, M. K.; Sheibani, S.; Rashchi, F.; nzalez-DelaCruz, V. M.; Caballero, A. Advanced Powder Technology 2012, 23, 833. doi: 10.1016/j.apt.2011.11.004(25) Nazemi, M. K.; Sheibani, S.; Rashchi, F.; nzalez-DelaCruz, V. M.; Caballero, A. Advanced Powder Technology 2012, 23, 833. doi: 10.1016/j.apt.2011.11.004

    26. [26]

      (26) Lopez-Fonseca, R.; Jimenez- nzalez, C.; de Rivas, B.; Gutierrez-Ortiz, J. I. Applied Catalysis A-General 2012, 437, 53.(26) Lopez-Fonseca, R.; Jimenez- nzalez, C.; de Rivas, B.; Gutierrez-Ortiz, J. I. Applied Catalysis A-General 2012, 437, 53.

    27. [27]

      (27) Zhang, Y. P.; Zhu, X. L.; Pan, Y. X.; Liu, C. J. Chinese Journal of Catalysis 2008, 29, 1058. [张月萍, 祝新利, 潘云翔, 刘昌俊. 催化学报, 2008, 29, 1058.](27) Zhang, Y. P.; Zhu, X. L.; Pan, Y. X.; Liu, C. J. Chinese Journal of Catalysis 2008, 29, 1058. [张月萍, 祝新利, 潘云翔, 刘昌俊. 催化学报, 2008, 29, 1058.]

    28. [28]

      (28) Li, M. Z.; Fan, G. L.; Qin, H.; Li, F. Ind. Eng. Chem. Res. 2012, 51, 11892. doi: 10.1021/ie3008659

      (28) Li, M. Z.; Fan, G. L.; Qin, H.; Li, F. Ind. Eng. Chem. Res. 2012, 51, 11892. doi: 10.1021/ie3008659

  • 加载中
计量
  • PDF下载量:  332
  • 文章访问数:  690
  • HTML全文浏览量:  53
文章相关
  • 发布日期:  2015-05-08
  • 收稿日期:  2014-11-20
  • 网络出版日期:  2015-03-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章