丁基黄药在CuO表面吸附的二维连续在线原位ATR-FTIR光谱研究

沈琪 范迎菊 尹龙 孙中溪

引用本文: 沈琪, 范迎菊, 尹龙, 孙中溪. 丁基黄药在CuO表面吸附的二维连续在线原位ATR-FTIR光谱研究[J]. 物理化学学报, 2014, 30(2): 359-364. doi: 10.3866/PKU.WHXB201312041 shu
Citation:  SHEN Qi, FAN Ying-Ju, YIN Long, SUN Zhong-Xi. Two-Dimensional Continuous Online In situ ATR-FTIR Spectroscopic Investigation of Adsorption of Butyl Xanthate on CuO Surfaces[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 359-364. doi: 10.3866/PKU.WHXB201312041 shu

丁基黄药在CuO表面吸附的二维连续在线原位ATR-FTIR光谱研究

  • 基金项目:

    国家自然科学基金(51274104,50874052) (51274104,50874052)

    国家重点基础研究发展规划项目(973)(2011CB933700)资助 (973)(2011CB933700)

摘要:

运用连续在线原位衰减全反射傅里叶变换红外光谱(ATR-FTIR)技术测定了纳米CuO表面对丁基黄药的吸附行为. 在FTIR 谱图中发现有峰的红移现象,吸收峰由1200 cm-1偏移到1193 cm-1,用超纯去离子水脱附,峰强度只有微小的变化,可判断丁基黄药在CuO表面发生了很强的化学吸附. 通过对吸附行为进行二维(2D)红外光谱分析,分辨出吸附过程中光谱强度的变化顺序. 二维异步相关光谱测定结果表明,1265 cm-1处振动吸收峰最先引起光谱强度的变化,1265 cm-1处吸收峰可归因为表面反应生成的双黄药和黄药分子聚集体的复合峰. 根据1200 cm-1处黄药特征吸收峰强度的变化,进行吸附动力学模拟,得出CuO对丁基黄药的最大吸附量为529 mg·g-1,且吸附符合拟二级吸附动力学过程.

English

    1. [1]

      (1) Sawant, P.; Kovalev, E.; Klug, J. T.; Efrima, S. Langmuir 2001,17, 2913. doi: 10.1021/la0014961

      (1) Sawant, P.; Kovalev, E.; Klug, J. T.; Efrima, S. Langmuir 2001,17, 2913. doi: 10.1021/la0014961

    2. [2]

      (2) Li, Z.; Yoon, R. Minerals Engineering 2012, 36-38, 126.(2) Li, Z.; Yoon, R. Minerals Engineering 2012, 36-38, 126.

    3. [3]

      (3) Feng, B.; Feng, Q. M.; Lu, Y. P.; Lv, P. C. Minerals Engineering2012, 39, 48. doi: 10.1016/j.mineng.2012.05.022(3) Feng, B.; Feng, Q. M.; Lu, Y. P.; Lv, P. C. Minerals Engineering2012, 39, 48. doi: 10.1016/j.mineng.2012.05.022

    4. [4]

      (4) Hao, F.; Davey, K. J.; Bruckard,W. J.;Woodcock, J. T. Int . J .Miner. Process. 2008, 89, 71. doi: 10.1016/j.minpro.2008.07.004(4) Hao, F.; Davey, K. J.; Bruckard,W. J.;Woodcock, J. T. Int . J .Miner. Process. 2008, 89, 71. doi: 10.1016/j.minpro.2008.07.004

    5. [5]

      (5) Souto, R. M.; Laz, M. M.; nzalez, S. J. Phys. Chem. B 1997,101, 508. doi: 10.1021/jp962144z(5) Souto, R. M.; Laz, M. M.; nzalez, S. J. Phys. Chem. B 1997,101, 508. doi: 10.1021/jp962144z

    6. [6]

      (6) Liu, X. Q.; Li, Z.; Zhang, Q.; Li, F.; Kong, T. Materials Letters2012, 72, 49. doi: 10.1016/j.matlet.2011.12.077(6) Liu, X. Q.; Li, Z.; Zhang, Q.; Li, F.; Kong, T. Materials Letters2012, 72, 49. doi: 10.1016/j.matlet.2011.12.077

    7. [7]

      (7) Ghadimkhani, G.; Tacconi, N.; Chanmanee,W.; Janakyab, C.;Rajeshwar, K. Chem. Commun. 2013, 49, 1297. doi: 10.1039/c2cc38068d(7) Ghadimkhani, G.; Tacconi, N.; Chanmanee,W.; Janakyab, C.;Rajeshwar, K. Chem. Commun. 2013, 49, 1297. doi: 10.1039/c2cc38068d

    8. [8]

      (8) Cornel, J.; Lindenberg, C.; Mazzotti, M. Ind. Eng. Chem. Res.2008, 47, 4870. doi: 10.1021/ie800236v(8) Cornel, J.; Lindenberg, C.; Mazzotti, M. Ind. Eng. Chem. Res.2008, 47, 4870. doi: 10.1021/ie800236v

    9. [9]

      (9) McQuillan, A. J. Adv. Mater. 2001, 13, 1034. doi: 10.1002/1521-4095(200107)13:12/13<1034::AID-ADMA1034>3.0.CO;2-7(9) McQuillan, A. J. Adv. Mater. 2001, 13, 1034. doi: 10.1002/1521-4095(200107)13:12/13<1034::AID-ADMA1034>3.0.CO;2-7

    10. [10]

      (10) Beaussart, A.; Petrone, P.; Mierczynska-Vasilev, A.; McQuillan,A. J.; Beattie, D. A. Langmuir 2012, 28, 4233. doi: 10.1021/la204652f(10) Beaussart, A.; Petrone, P.; Mierczynska-Vasilev, A.; McQuillan,A. J.; Beattie, D. A. Langmuir 2012, 28, 4233. doi: 10.1021/la204652f

    11. [11]

      (11) Michelmore, A.; ng,W.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 2985. doi: 10.1039/b001213k(11) Michelmore, A.; ng,W.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 2985. doi: 10.1039/b001213k

    12. [12]

      (12) Kirwan, L. J.; Fawell, P. D.; Bronswijk,W. Langmuir 2003, 19,5802. doi: 10.1021/la027012d(12) Kirwan, L. J.; Fawell, P. D.; Bronswijk,W. Langmuir 2003, 19,5802. doi: 10.1021/la027012d

    13. [13]

      (13) Brimaud, S.; Jusys, Z.; Behm, R. J. Electrocatalysis 2011, 2,69. doi: 10.1007/s12678-011-0040-7(13) Brimaud, S.; Jusys, Z.; Behm, R. J. Electrocatalysis 2011, 2,69. doi: 10.1007/s12678-011-0040-7

    14. [14]

      (14) Ge, D. L.; Fan, Y. J.; Yin, L.; Sun, Z. X. Acta Phys. -Chim. Sin.2013, 29, 371. [葛东来, 范迎菊, 尹龙, 孙中溪. 物理化学学报, 2013, 29, 371.] doi: 10.3866/PKU.WHXB201211146(14) Ge, D. L.; Fan, Y. J.; Yin, L.; Sun, Z. X. Acta Phys. -Chim. Sin.2013, 29, 371. [葛东来, 范迎菊, 尹龙, 孙中溪. 物理化学学报, 2013, 29, 371.] doi: 10.3866/PKU.WHXB201211146

    15. [15]

      (15) Noda, I.; Dowrey, A. E.; Marcott, C. Applied Spectroscopy1993, 47, 1317. doi: 10.1366/0003702934067513(15) Noda, I.; Dowrey, A. E.; Marcott, C. Applied Spectroscopy1993, 47, 1317. doi: 10.1366/0003702934067513

    16. [16]

      (16) Noda, I. Bull. Am. Phys. Soc. 1986, 31, 520.(16) Noda, I. Bull. Am. Phys. Soc. 1986, 31, 520.

    17. [17]

      (17) Noda, I. Appl. Spectroscopy 1990, 44, 550. doi: 10.1366/0003702904087398(17) Noda, I. Appl. Spectroscopy 1990, 44, 550. doi: 10.1366/0003702904087398

    18. [18]

      (18) Shen, Y.;Wu, P. Y. J. Phys. Chem. B 2003, 107, 4224. doi: 10.1021/jp0269975(18) Shen, Y.;Wu, P. Y. J. Phys. Chem. B 2003, 107, 4224. doi: 10.1021/jp0269975

    19. [19]

      (19) Beattie, D. A.; Chapelet, J. K.; Grafe, M.; Skinner,W. M.;Smith, E. Environ. Sci. Technol. 2008, 42, 9191. doi: 10.1021/es801767b(19) Beattie, D. A.; Chapelet, J. K.; Grafe, M.; Skinner,W. M.;Smith, E. Environ. Sci. Technol. 2008, 42, 9191. doi: 10.1021/es801767b

    20. [20]

      (20) Chandra, A. P.; Puskar, L.; Simpson, D. J.; Gerson, A. R. Int. J. Miner. Process. 2012, 114-117, 16.(20) Chandra, A. P.; Puskar, L.; Simpson, D. J.; Gerson, A. R. Int. J. Miner. Process. 2012, 114-117, 16.

    21. [21]

      (21) Leppinen, J. O.; Basilio, C. I.; Yoon, R. H. Int. J. Miner. Process. 1989, 26, 259. doi: 10.1016/0301-7516(89)90032-X(21) Leppinen, J. O.; Basilio, C. I.; Yoon, R. H. Int. J. Miner. Process. 1989, 26, 259. doi: 10.1016/0301-7516(89)90032-X

    22. [22]

      (22) Popov, S. R.; Vocinic, D. R. Int. J. Miner. Process. 1990, 30,229.(22) Popov, S. R.; Vocinic, D. R. Int. J. Miner. Process. 1990, 30,229.

    23. [23]

      (23) Hellstrom, P.; Holmgren, A.; Öberg, S. J. Phys. Chem. C 2007,111, 16920. doi: 10.1021/jp074254j(23) Hellstrom, P.; Holmgren, A.; Öberg, S. J. Phys. Chem. C 2007,111, 16920. doi: 10.1021/jp074254j

    24. [24]

      (24) Hao, F. P.; Ewen Silvester, E.; David, G. Anal. Chem. 2000, 72,4836. doi: 10.1021/ac991277o(24) Hao, F. P.; Ewen Silvester, E.; David, G. Anal. Chem. 2000, 72,4836. doi: 10.1021/ac991277o

    25. [25]

      (25) Larsson, M. L.; Holmgren, A.; Forsling,W. Langmuir 2000, 16,8129. doi: 10.1021/la000454+(25) Larsson, M. L.; Holmgren, A.; Forsling,W. Langmuir 2000, 16,8129. doi: 10.1021/la000454+

    26. [26]

      (26) Fredriksson, A.; Holmgren, A. Colloid Surface A 2007, 302,96. doi: 10.1016/j.colsurfa.2007.02.005(26) Fredriksson, A.; Holmgren, A. Colloid Surface A 2007, 302,96. doi: 10.1016/j.colsurfa.2007.02.005

    27. [27]

      (27) Yang, Y. L.; Yan,W.; Jing, C. Y. Langmuir 2012, 28, 14588. doi: 10.1021/la303413j

      (27) Yang, Y. L.; Yan,W.; Jing, C. Y. Langmuir 2012, 28, 14588. doi: 10.1021/la303413j

  • 加载中
计量
  • PDF下载量:  535
  • 文章访问数:  1321
  • HTML全文浏览量:  96
文章相关
  • 发布日期:  2014-01-23
  • 收稿日期:  2013-07-18
  • 网络出版日期:  2013-12-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章