非血红素铁(III)活化氧分子反应的自旋轨道耦合和零场分裂

吕玲玲 王小芳 朱元成 刘新文 袁焜 王永成

引用本文: 吕玲玲, 王小芳, 朱元成, 刘新文, 袁焜, 王永成. 非血红素铁(III)活化氧分子反应的自旋轨道耦合和零场分裂[J]. 物理化学学报, 2013, 29(08): 1673-1680. doi: 10.3866/PKU.WHXB201306041 shu
Citation:  LV Ling-Ling, WANG Xiao-Fang, ZHU Yuan-Cheng, LIU Xin-Wen, YUAN Kun, WANG Yong-Cheng. Spin-Orbit Coupling and Zero-Field Splitting in Dioxygen Activation by Non-Heme Iron(III)[J]. Acta Physico-Chimica Sinica, 2013, 29(08): 1673-1680. doi: 10.3866/PKU.WHXB201306041 shu

非血红素铁(III)活化氧分子反应的自旋轨道耦合和零场分裂

  • 基金项目:

    国家自然科学基金(21263022) (21263022)

    甘肃省财政厅高校科研项目基金资助 

摘要:

采用密度泛函理论对原儿茶酚3,4-双加氧酶(3,4-PCD)活化O2分子的反应机理进行了探讨. 初始复合物, 六重态61的超快形成主要归因于电子交换诱导系间穿越(EISC), Fe dz:O2 π*(z)是主要的交换通道, 在Fe―O键长为0.2487 nm处, 交换重叠积分Sij=ádz α|π*(z) β>=0.3758. 从六重态61 形成四重态中间体41, 有两种效应共存, 即电子交换耦合作用和自旋轨道耦合(SOC)作用, 且相互竞争. 计算结果表明, 自旋轨道耦合(SOC)作用起主导因素(SOC=353.16 cm-1). 至于O―O键的解离主要取决于儿茶酚(PCA)最高占据分子轨道(HOMO)的电子转移, 非血红素酶的铁中心仅承担PCA向O2电子转移的缓冲作用.22

English

    1. [1]

      (1) Pau, M. Y. M.; Davis, M. I.; Orville, A. M.; Lipscomb, J. D.;Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 1944. doi: 10.1021/ja065671x

      (1) Pau, M. Y. M.; Davis, M. I.; Orville, A. M.; Lipscomb, J. D.;Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 1944. doi: 10.1021/ja065671x

    2. [2]

      (2) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. Rev.2004, 104, 939. doi: 10.1021/cr020628n(2) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. Rev.2004, 104, 939. doi: 10.1021/cr020628n

    3. [3]

      (3) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.;Lee, S. K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y. S.;Zhou, J. Chem. Rev. 2000, 100, 235. doi: 10.1021/cr9900275(3) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.;Lee, S. K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y. S.;Zhou, J. Chem. Rev. 2000, 100, 235. doi: 10.1021/cr9900275

    4. [4]

      (4) Nam,W. Accounts Chem. Res. 2007, 40, 522. doi: 10.1021/ar700027f(4) Nam,W. Accounts Chem. Res. 2007, 40, 522. doi: 10.1021/ar700027f

    5. [5]

      (5) Borowski, T.; Siegbahn, P. E. M. J. Am. Chem. Soc. 2006, 128,12941. doi: 10.1021/ja0641251(5) Borowski, T.; Siegbahn, P. E. M. J. Am. Chem. Soc. 2006, 128,12941. doi: 10.1021/ja0641251

    6. [6]

      (6) Deeth, R. J.; Bugg, T. D. H. J. Biol. Inorg. Chem. 2003, 8, 409.(6) Deeth, R. J.; Bugg, T. D. H. J. Biol. Inorg. Chem. 2003, 8, 409.

    7. [7]

      (7) Fiedler, A.; Schroder, D.; Shaik, S.; Schwarz. H. J. Am. Chem. Soc. 1994, 116, 10734. doi: 10.1021/ja00102a043(7) Fiedler, A.; Schroder, D.; Shaik, S.; Schwarz. H. J. Am. Chem. Soc. 1994, 116, 10734. doi: 10.1021/ja00102a043

    8. [8]

      (8) Yoshizawa, K.; Shiota, Y.; Yamabe, T. J. Chem. Phys. 1999, 111,538. doi: 10.1063/1.479333(8) Yoshizawa, K.; Shiota, Y.; Yamabe, T. J. Chem. Phys. 1999, 111,538. doi: 10.1063/1.479333

    9. [9]

      (9) Shaik, S.; Hirao, H.; Kumar, D. Accounts Chem. Res. 2007, 40,532. doi: 10.1021/ar600042c(9) Shaik, S.; Hirao, H.; Kumar, D. Accounts Chem. Res. 2007, 40,532. doi: 10.1021/ar600042c

    10. [10]

      (10) Schroder, D.; Shaik, S.; Schwarz, H. Accounts Chem. Res. 2000,33, 139. doi: 10.1021/ar990028j(10) Schroder, D.; Shaik, S.; Schwarz, H. Accounts Chem. Res. 2000,33, 139. doi: 10.1021/ar990028j

    11. [11]

      (11) Neese, F. J. Am. Chem. Soc. 2006, 128, 10213. doi: 10.1021/ja061798a(11) Neese, F. J. Am. Chem. Soc. 2006, 128, 10213. doi: 10.1021/ja061798a

    12. [12]

      (12) Neese, F. ORCA, version 2.8-20; Max-Planck Institute forBioinorganic Chemistry: Mülheim an der Ruhr, Germany, 2010.(12) Neese, F. ORCA, version 2.8-20; Max-Planck Institute forBioinorganic Chemistry: Mülheim an der Ruhr, Germany, 2010.

    13. [13]

      (13) Fedorov, D. G.; Koseki, S.; Schmidt, M.W.; rdon, M. S. Int. Rev. Phys. Chem. 2003, 22, 551.(13) Fedorov, D. G.; Koseki, S.; Schmidt, M.W.; rdon, M. S. Int. Rev. Phys. Chem. 2003, 22, 551.

    14. [14]

      (14) Elgren, T. E.; Orville, A. M.; Kelly, K. A.; Lipscomb, J. D.;Ohlendorf, D. H.; Que, L., Jr. Biochemistry 1997, 36,11504. doi: 10.1021/bi970691k(14) Elgren, T. E.; Orville, A. M.; Kelly, K. A.; Lipscomb, J. D.;Ohlendorf, D. H.; Que, L., Jr. Biochemistry 1997, 36,11504. doi: 10.1021/bi970691k

    15. [15]

      (15) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2003.(15) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    16. [16]

      (16) Hess, B. A.; Marian, C. M.;Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365. doi: 10.1016/0009-2614(96)00119-4(16) Hess, B. A.; Marian, C. M.;Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365. doi: 10.1016/0009-2614(96)00119-4

    17. [17]

      (17) Rodriguez, J. H.; McCusker, J. K. J. Chem. Phys. 2002, 116,6253. doi: 10.1063/1.1461363(17) Rodriguez, J. H.; McCusker, J. K. J. Chem. Phys. 2002, 116,6253. doi: 10.1063/1.1461363

    18. [18]

      (18) Rodriguez, J. H.; Wheeler, D. E.; McCusker, J. K. J. Am. Chem. Soc. 1998, 120, 12051. doi: 10.1021/ja980917m(18) Rodriguez, J. H.; Wheeler, D. E.; McCusker, J. K. J. Am. Chem. Soc. 1998, 120, 12051. doi: 10.1021/ja980917m

    19. [19]

      (19) Schmidtm, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.;Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.;Mot mery, J. A. J. Comput. Chem. 1993, 14, 1347.(19) Schmidtm, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.;Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.;Mot mery, J. A. J. Comput. Chem. 1993, 14, 1347.

    20. [20]

      (20) Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan,C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.;Wasielewski, M. R. J. Am. Chem. Soc. 2009, 131, 3700. doi: 10.1021/ja808924f(20) Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan,C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.;Wasielewski, M. R. J. Am. Chem. Soc. 2009, 131, 3700. doi: 10.1021/ja808924f

    21. [21]

      (21) Isobe, H.; Yamanaka, S.; Kuramitsu, S.; Yamaguchi, K. J. Am. Chem. Soc. 2008, 130, 132. doi: 10.1021/ja073834r(21) Isobe, H.; Yamanaka, S.; Kuramitsu, S.; Yamaguchi, K. J. Am. Chem. Soc. 2008, 130, 132. doi: 10.1021/ja073834r

    22. [22]

      (22) Dede, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Baik, M. H.J. Am. Chem. Soc. 2009, 122, 114.(22) Dede, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Baik, M. H.J. Am. Chem. Soc. 2009, 122, 114.

    23. [23]

      (23) Lv, L. L.;Wang, Y. C.;Wang, Q.; Liu, H.W. J. Phys. Chem. C2010, 114, 17610.(23) Lv, L. L.;Wang, Y. C.;Wang, Q.; Liu, H.W. J. Phys. Chem. C2010, 114, 17610.

    24. [24]

      (24) Lü, L. L.;Wang, Y. C. Acta. Phys. -Chim. Sin. 2006, 22, 265.[吕玲玲, 王永成. 物理化学学报, 2006, 22, 265.] doi: 10.3866/PKU.WHXB20060302(24) Lü, L. L.;Wang, Y. C. Acta. Phys. -Chim. Sin. 2006, 22, 265.[吕玲玲, 王永成. 物理化学学报, 2006, 22, 265.] doi: 10.3866/PKU.WHXB20060302

    25. [25]

      (25) Lü, L. L.; Zhu, Y. C.;Wang, X. F.; Zuo, G. F.; Zhao, S. R.; Guo,F.;Wang, Y. C. Chin. Sci. Bull. 2013, 58, 627. [吕玲玲, 朱元成, 王小芳, 左国防, 赵素瑞, 郭峰, 王永成. 科学通报, 2013,58, 627.] doi: 10.1007/s11434-012-5316-7

      (25) Lü, L. L.; Zhu, Y. C.;Wang, X. F.; Zuo, G. F.; Zhao, S. R.; Guo,F.;Wang, Y. C. Chin. Sci. Bull. 2013, 58, 627. [吕玲玲, 朱元成, 王小芳, 左国防, 赵素瑞, 郭峰, 王永成. 科学通报, 2013,58, 627.] doi: 10.1007/s11434-012-5316-7

  • 加载中
计量
  • PDF下载量:  578
  • 文章访问数:  875
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2013-07-09
  • 收稿日期:  2013-02-27
  • 网络出版日期:  2013-06-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章