径向电场对纳米管中水分子通量的影响

葛振朋 石彦超 李晓毅

引用本文: 葛振朋, 石彦超, 李晓毅. 径向电场对纳米管中水分子通量的影响[J]. 物理化学学报, 2013, 29(08): 1655-1660. doi: 10.3866/PKU.WHXB201305222 shu
Citation:  GE Zhen-Peng, SHI Yan-Chao, LI Xiao-Yi. Effects of Ortho nal Electric Field on Water Flux through a Carbon Nanotube[J]. Acta Physico-Chimica Sinica, 2013, 29(08): 1655-1660. doi: 10.3866/PKU.WHXB201305222 shu

径向电场对纳米管中水分子通量的影响

  • 基金项目:

    国家自然科学基金(21274164, 21144001) (21274164, 21144001)

    国家重点基础研究发展规划项目(973) (2012CB934001)资助 (973) (2012CB934001)

摘要:

水分子在纳米通道中的运动对于生命活动、纳米器件的设计等都有着重要的意义. 现在已经证实, 在(6,6)的碳纳米管中, 水分子会以单分子水链的形式协同通过碳纳米管. 但是如何控制水分子的流量仍然是一个困难的课题. 本文研究了在径向电场作用下, 碳纳米管中水分子通量的变化趋势和碳纳米管的开关行为.发现在碳纳米管两端存在200 MPa的压力差时, 电场强度从1 V·nm-1增加到3 V·nm-1, 水分子通量线性减小. 当径向电场强度增加到3 V·nm-1时, 碳纳米管处于关闭状态, 水分子无法通过碳纳米管. 进一步, 我们发现水偶极与碳纳米管管轴夹角的平均值的概率分布和翻转频率都与水分子在纳米管中的个数有很大关系.

English

    1. [1]

      (1) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2004, 86,50. doi: 10.1016/S0006-3495(04)74082-5

      (1) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2004, 86,50. doi: 10.1016/S0006-3495(04)74082-5

    2. [2]

      (2) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2002, 83,154. doi: 10.1016/S0006-3495(02)75157-6(2) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2002, 83,154. doi: 10.1016/S0006-3495(02)75157-6

    3. [3]

      (3) Ma, M. D.; Shen, L.; Sheridan, J.; Liu, J. Z.; Chen, C.; Zheng,Q. Phys. Rev. E 2011, 83, 036316. doi: 10.1103/PhysRevE.83.036316(3) Ma, M. D.; Shen, L.; Sheridan, J.; Liu, J. Z.; Chen, C.; Zheng,Q. Phys. Rev. E 2011, 83, 036316. doi: 10.1103/PhysRevE.83.036316

    4. [4]

      (4) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188. doi: 10.1038/35102535(4) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188. doi: 10.1038/35102535

    5. [5]

      (5) Waghe, A.; Rasaiah, J. C.; Hummer, G. J. Chem. Phys. 2002,117, 10789. doi: 10.1063/1.1519861(5) Waghe, A.; Rasaiah, J. C.; Hummer, G. J. Chem. Phys. 2002,117, 10789. doi: 10.1063/1.1519861

    6. [6]

      (6) Holt, J. K.; Park, H. G.;Wang,Y. M.; Stadermann, M.; Artyukhin,A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006,312, 1034. doi: 10.1126/science.1126298(6) Holt, J. K.; Park, H. G.;Wang,Y. M.; Stadermann, M.; Artyukhin,A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006,312, 1034. doi: 10.1126/science.1126298

    7. [7]

      (7) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. R.Nano Lett. 2010, 10, 4067. doi: 10.1021/nl1021046(7) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. R.Nano Lett. 2010, 10, 4067. doi: 10.1021/nl1021046

    8. [8]

      (8) Zhang, Z. Q.; Ye, H. F.; Liu, Z.; Ding, J. N.; Cheng, G. G.; Ling,Z. Y.; Zheng, Y. G.;Wang, L.;Wang, J. B. J. Appl. Phys. 2012,111, 114304. doi: 10.1063/1.4724344(8) Zhang, Z. Q.; Ye, H. F.; Liu, Z.; Ding, J. N.; Cheng, G. G.; Ling,Z. Y.; Zheng, Y. G.;Wang, L.;Wang, J. B. J. Appl. Phys. 2012,111, 114304. doi: 10.1063/1.4724344

    9. [9]

      (9) Zuo, G. C.; Shen, R.; Ma, S. J.; Guo,W. L. ACS Nano 2010, 4,205. doi: 10.1021/nn901334w(9) Zuo, G. C.; Shen, R.; Ma, S. J.; Guo,W. L. ACS Nano 2010, 4,205. doi: 10.1021/nn901334w

    10. [10]

      (10) Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256, 1539.doi: 10.1126/science.256.5063.1539(10) Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256, 1539.doi: 10.1126/science.256.5063.1539

    11. [11]

      (11) Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.;Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor,R. P.; Stout, A. Phys. Rev. Lett. 2006, 96, 154502. doi: 10.1103/PhysRevLett.96.154502(11) Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.;Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor,R. P.; Stout, A. Phys. Rev. Lett. 2006, 96, 154502. doi: 10.1103/PhysRevLett.96.154502

    12. [12]

      (12) Joseph, S.; Aluru, N. R. Phys. Rev. Lett. 2008, 101, 064502.doi: 10.1103/PhysRevLett.101.064502(12) Joseph, S.; Aluru, N. R. Phys. Rev. Lett. 2008, 101, 064502.doi: 10.1103/PhysRevLett.101.064502

    13. [13]

      (13) Joseph, S.; Aluru, N. R. Nano Lett. 2008, 8, 452. doi: 10.1021/nl072385q(13) Joseph, S.; Aluru, N. R. Nano Lett. 2008, 8, 452. doi: 10.1021/nl072385q

    14. [14]

      (14) Vaitheeswaran, S.; Yin, H.; Rasaiah, J. C. J. Phys. Chem. B2005, 109, 6629. doi: 10.1021/jp045591k(14) Vaitheeswaran, S.; Yin, H.; Rasaiah, J. C. J. Phys. Chem. B2005, 109, 6629. doi: 10.1021/jp045591k

    15. [15]

      (15) Bratko, D.; Daub, C. D.; Leung, K.; Luzar, A. J. Am. Chem. Soc.2007, 129, 2504. doi: 10.1021/ja0659370(15) Bratko, D.; Daub, C. D.; Leung, K.; Luzar, A. J. Am. Chem. Soc.2007, 129, 2504. doi: 10.1021/ja0659370

    16. [16]

      (16) Li, J. Y.; ng, X. J.; Lu, H. J.; Li, D.; Fang, H. P.; Zhou, R. H.Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3687. doi: 10.1073/pnas.0604541104(16) Li, J. Y.; ng, X. J.; Lu, H. J.; Li, D.; Fang, H. P.; Zhou, R. H.Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3687. doi: 10.1073/pnas.0604541104

    17. [17]

      (17) Raghunathan, A. V.; Aluru, N. R. Phys. Rev. Lett. 2006, 97.(17) Raghunathan, A. V.; Aluru, N. R. Phys. Rev. Lett. 2006, 97.

    18. [18]

      (18) Suk, M. E.; Aluru, N. R. Phys. Chem. Chem. Phys. 2009, 11,8614. doi: 10.1039/b903541a(18) Suk, M. E.; Aluru, N. R. Phys. Chem. Chem. Phys. 2009, 11,8614. doi: 10.1039/b903541a

    19. [19]

      (19) ng, X. J.; Li, J. Y.; Lu, H. J.;Wan, R. Z.; Li, J. C.; Hu, J.;Fang, H. P. Nat. Nanotechnol. 2007, 2, 709. doi: 10.1038/nnano.2007.320(19) ng, X. J.; Li, J. Y.; Lu, H. J.;Wan, R. Z.; Li, J. C.; Hu, J.;Fang, H. P. Nat. Nanotechnol. 2007, 2, 709. doi: 10.1038/nnano.2007.320

    20. [20]

      (20) Won, C. Y.; Joseph, S.; Aluru, N. R. J. Chem. Phys. 2006, 125,117701. doi: 10.1063/1.2338305(20) Won, C. Y.; Joseph, S.; Aluru, N. R. J. Chem. Phys. 2006, 125,117701. doi: 10.1063/1.2338305

    21. [21]

      (21) Garate, J. A.; English, N. J.; MacElroy, J. M. D. J. Chem. Phys.2009, 131, 8.(21) Garate, J. A.; English, N. J.; MacElroy, J. M. D. J. Chem. Phys.2009, 131, 8.

    22. [22]

      (22) Dzubiella, J.; Allen, R. J.; Hansen, J. P. J. Chem. Phys. 2004,120, 5001. doi: 10.1063/1.1665656(22) Dzubiella, J.; Allen, R. J.; Hansen, J. P. J. Chem. Phys. 2004,120, 5001. doi: 10.1063/1.1665656

    23. [23]

      (23) Figueras, L.; Faraudo, J. Mol. Simulat. 2012, 38, 23.doi: 10.1080/08927022.2011.599032(23) Figueras, L.; Faraudo, J. Mol. Simulat. 2012, 38, 23.doi: 10.1080/08927022.2011.599032

    24. [24]

      (24) Su, J. Y.; Guo, H. X. ACS Nano 2011, 5, 351. doi: 10.1021/nn1014616(24) Su, J. Y.; Guo, H. X. ACS Nano 2011, 5, 351. doi: 10.1021/nn1014616

    25. [25]

      (25) Lü, Y. J.; Chen, M. Acta Phys. -Chim. Sin. 2012, 28, 1070.[吕勇军, 陈民. 物理化学学报, 2012, 28, 1070.] doi: 10.3866/PKU.WHXB201202213(25) Lü, Y. J.; Chen, M. Acta Phys. -Chim. Sin. 2012, 28, 1070.[吕勇军, 陈民. 物理化学学报, 2012, 28, 1070.] doi: 10.3866/PKU.WHXB201202213

    26. [26]

      (26) LI, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28,573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28,573.] doi: 10.3866/PKU.WHXB201112191(26) LI, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28,573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28,573.] doi: 10.3866/PKU.WHXB201112191

    27. [27]

      (27) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2012,28, 1037. [张霞, 张强, 赵东霞. 物理化学学报, 2012,28, 1037.] doi: 10.3866/PKU.WHXB201203072(27) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2012,28, 1037. [张霞, 张强, 赵东霞. 物理化学学报, 2012,28, 1037.] doi: 10.3866/PKU.WHXB201203072

    28. [28]

      (28) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid,E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K.J. Comput. Chem. 2005, 26, 1781.(28) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid,E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K.J. Comput. Chem. 2005, 26, 1781.

    29. [29]

      (29) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.;Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.;Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31, 671.(29) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.;Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.;Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31, 671.

    30. [30]

      (30) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869(30) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    31. [31]

      (31) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117(31) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117

    32. [32]

      (32) Wan, R.; Lu, H.; Li, J.; Bao, J.; Hu, J.; Fang, H. Phys. Chem. Chem. Phys. 2009, 11, 9898. doi: 10.1039/b907926m(32) Wan, R.; Lu, H.; Li, J.; Bao, J.; Hu, J.; Fang, H. Phys. Chem. Chem. Phys. 2009, 11, 9898. doi: 10.1039/b907926m

    33. [33]

      (33) Wan, R. Z.; Li, J. Y.; Lu, H. J.; Fang, H. P. J. Am. Chem. Soc.2005, 127, 7166. doi: 10.1021/ja050044d(33) Wan, R. Z.; Li, J. Y.; Lu, H. J.; Fang, H. P. J. Am. Chem. Soc.2005, 127, 7166. doi: 10.1021/ja050044d

    34. [34]

      (34) Yang, Y. L.; Li, X. Y.; Jiang, J. L.; Du, H. L.; Zhao, L. N.; Zhao,Y. L. ACS Nano 2010, 4, 5755. doi: 10.1021/nn1014825(34) Yang, Y. L.; Li, X. Y.; Jiang, J. L.; Du, H. L.; Zhao, L. N.; Zhao,Y. L. ACS Nano 2010, 4, 5755. doi: 10.1021/nn1014825

    35. [35]

      (35) Liu, B.; Li, X. Y.; Li, B. L.; Xu, B. Q.; Zhao, Y. L. Nano Lett.2009, 9, 1386. doi: 10.1021/nl8030339(35) Liu, B.; Li, X. Y.; Li, B. L.; Xu, B. Q.; Zhao, Y. L. Nano Lett.2009, 9, 1386. doi: 10.1021/nl8030339

    36. [36]

      (36) Wu, K. F.; Zhou, B.; Xiu, P.; Qi,W. P.;Wan, R. Z.; Fang, H. P.J. Chem. Phys. 2010, 133, 204702. doi: 10.1063/1.3509396(36) Wu, K. F.; Zhou, B.; Xiu, P.; Qi,W. P.;Wan, R. Z.; Fang, H. P.J. Chem. Phys. 2010, 133, 204702. doi: 10.1063/1.3509396

    37. [37]

      (37) Zhu, F.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/S0006-3495(03)74469-5

      (37) Zhu, F.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/S0006-3495(03)74469-5

  • 加载中
计量
  • PDF下载量:  825
  • 文章访问数:  1043
  • HTML全文浏览量:  45
文章相关
  • 发布日期:  2013-07-09
  • 收稿日期:  2013-02-26
  • 网络出版日期:  2013-05-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章