一步水热合成铜纳米颗粒负载二氧化钛复合纳米管及其可见光催化活性

赵鹏君 吴荣 侯娟 常爱民 关芳 张博

引用本文: 赵鹏君, 吴荣, 侯娟, 常爱民, 关芳, 张博. 一步水热合成铜纳米颗粒负载二氧化钛复合纳米管及其可见光催化活性[J]. 物理化学学报, 2012, 28(08): 1971-1977. doi: 10.3866/PKU.WHXB201206111 shu
Citation:  ZHAO Peng-Jun, WU Rong, HOU Juan, CHANG Ai-min, GUAN Fang, ZHANG Bo. One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2012, 28(08): 1971-1977. doi: 10.3866/PKU.WHXB201206111 shu

一步水热合成铜纳米颗粒负载二氧化钛复合纳米管及其可见光催化活性

  • 基金项目:

    中国科学院&ldquo 

    西部之光&rdquo 

    联合学者项目(LHXZ200902) (LHXZ200902)

    中国博士后科研基金项目(20100471679, 201104704)资助 (20100471679, 201104704)

摘要:

采用一步水热法合成了Cu纳米粒子负载二氧化钛纳米管材料. 利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)等对材料的相组成、形貌以及形成过程进行了研究. 制得的Cu-TiO2复合纳米材料长度约为100 nm, 直径10-15 nm, 其上负载的Cu纳米粒子尺寸约为5 nm. BET比表面积测试表明实验制备的Cu-TiO2复合纳米管的比表面积为154.67 m2·g-1. 通过调节水热反应时间和钛前驱体种类, 研究了该复合纳米管材料的形成机制. 结果表明: 非晶态的钛源对于成功一步合成Cu-TiO2复合纳米管至关重要. 同时, 实验中观察到铜纳米粒子的尺寸随水热反应时间延长而减小(反奥氏陈化过程), 这一现象有助于纳米粒子的可控合成.紫外-可见吸收光谱表明该复合纳米管在350-800 nm范围内有较强的吸收, 并在550-600 nm范围观察到Cu的表面等离子激元吸收带. Cu-TiO2界面处形成的肖特基势垒有助于加快光生载流子的输运, 提高光生电子-空穴对的分离效率. 光催化实验表明Cu-TiO2复合纳米管在可见光下具有较高的催化活性.

English

    1. [1]

      (1) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

      (1) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    2. [2]

      (2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红,熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.] doi: 10.3866/PKU.WHXB20100815(2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红,熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.] doi: 10.3866/PKU.WHXB20100815

    3. [3]

      (3) Zhang,W.; Zou, L.;Wang, L. Appl. Catal. A 2009, 371, 1.doi: 10.1016/j.apcata.2009.09.038(3) Zhang,W.; Zou, L.;Wang, L. Appl. Catal. A 2009, 371, 1.doi: 10.1016/j.apcata.2009.09.038

    4. [4]

      (4) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.;Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X.W. J. Am. Chem. Soc. 2010, 132, 6124. doi: 10.1021/ja100102y(4) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.;Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X.W. J. Am. Chem. Soc. 2010, 132, 6124. doi: 10.1021/ja100102y

    5. [5]

      (5) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Chen, H. M. Adv. Funct. Mater. 2011, 21, 1717. doi: 10.1002/adfm.201002295(5) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Chen, H. M. Adv. Funct. Mater. 2011, 21, 1717. doi: 10.1002/adfm.201002295

    6. [6]

      (6) Wang, N.; Han, L.; He, H.; Park, N. H.; Koumoto, K. Energy Environ. Sci. 2011, 4, 3676. doi: 10.1039/c1ee01646f(6) Wang, N.; Han, L.; He, H.; Park, N. H.; Koumoto, K. Energy Environ. Sci. 2011, 4, 3676. doi: 10.1039/c1ee01646f

    7. [7]

      (7) Attar, A. S.; Ghamsari, M. S.; Hajiesmaeilbaigi, F.; Mirdamadi,S.; Katagiri, K.; Koumoto, K. Mater. Chem. Phys. 2009, 113,856. doi: 10.1016/j.matchemphys.2008.08.040(7) Attar, A. S.; Ghamsari, M. S.; Hajiesmaeilbaigi, F.; Mirdamadi,S.; Katagiri, K.; Koumoto, K. Mater. Chem. Phys. 2009, 113,856. doi: 10.1016/j.matchemphys.2008.08.040

    8. [8]

      (8) Wang, D.; Yu, B.;Wang, C.; Zhou, F.; Liu,W. Adv. Mater. 2009,21, 1964. doi: 10.1002/adma.200801996(8) Wang, D.; Yu, B.;Wang, C.; Zhou, F.; Liu,W. Adv. Mater. 2009,21, 1964. doi: 10.1002/adma.200801996

    9. [9]

      (9) Dai, L.; Sow, C. H.; Lim, C. T.; Cheong,W. C. D.; Tan, V. B. C.Nano Lett. 2009, 9, 576. doi: 10.1021/nl8027284(9) Dai, L.; Sow, C. H.; Lim, C. T.; Cheong,W. C. D.; Tan, V. B. C.Nano Lett. 2009, 9, 576. doi: 10.1021/nl8027284

    10. [10]

      (10) Lekeufack, D. D.; Brioude, A.; Mouti, A.; Alauzun, J. G.;Stadelmann, P.; Coleman, A.W.; Miele, P. Chem. Commun.2010, 46, 4544. doi: 10.1039/c0cc00935k(10) Lekeufack, D. D.; Brioude, A.; Mouti, A.; Alauzun, J. G.;Stadelmann, P.; Coleman, A.W.; Miele, P. Chem. Commun.2010, 46, 4544. doi: 10.1039/c0cc00935k

    11. [11]

      (11) Yuan, J.;Wang, Y.; Chen, Y.; Yang,W.; Yao, J.; Cao, Y. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139(11) Yuan, J.;Wang, Y.; Chen, Y.; Yang,W.; Yao, J.; Cao, Y. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139

    12. [12]

      (12) Sathish, M.; Viswanathan, B.; Viswanath, R. P.; pinath, C. S.Chem. Mater. 2005, 17, 6349. doi: 10.1021/cm052047v(12) Sathish, M.; Viswanathan, B.; Viswanath, R. P.; pinath, C. S.Chem. Mater. 2005, 17, 6349. doi: 10.1021/cm052047v

    13. [13]

      (13) Liu, G.;Wang, X.; Chen, Z.; Cheng, H. M.; Lu, G. Q. J. Colloid Interface Sci. 2009, 329, 331. doi: 10.1016/j.jcis.2008.09.061(13) Liu, G.;Wang, X.; Chen, Z.; Cheng, H. M.; Lu, G. Q. J. Colloid Interface Sci. 2009, 329, 331. doi: 10.1016/j.jcis.2008.09.061

    14. [14]

      (14) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526(14) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526

    15. [15]

      (15) Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.;Wu, F.; Song, D.J. Phys. Chem. B 2004, 108, 2868. doi: 10.1021/jp036821i(15) Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.;Wu, F.; Song, D.J. Phys. Chem. B 2004, 108, 2868. doi: 10.1021/jp036821i

    16. [16]

      (16) Lei, B. X.; Liao, J. Y.; Zhang, R.;Wang, J.; Su, C. Y.; Kuang, D.B. J. Phys. Chem. C 2010, 114, 15228.(16) Lei, B. X.; Liao, J. Y.; Zhang, R.;Wang, J.; Su, C. Y.; Kuang, D.B. J. Phys. Chem. C 2010, 114, 15228.

    17. [17]

      (17) Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J. Nano Lett.2007, 7, 3739. doi: 10.1021/nl072145a(17) Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J. Nano Lett.2007, 7, 3739. doi: 10.1021/nl072145a

    18. [18]

      (18) Huang, B.; Yang, Y.; Chen, X.; Ye, D. Catal. Commun. 2010, 11,844. doi: 10.1016/j.catcom.2010.03.006(18) Huang, B.; Yang, Y.; Chen, X.; Ye, D. Catal. Commun. 2010, 11,844. doi: 10.1016/j.catcom.2010.03.006

    19. [19]

      (19) Viana, B. C.; Ferreira, O. P.; Filho, A. G. S.; Rodrigues, C. M.;Moraes, S. G.; Filho, J. M.; Alves, O. L. J. Phys. Chem. C 2009,113, 20234. doi: 10.1021/jp9068043(19) Viana, B. C.; Ferreira, O. P.; Filho, A. G. S.; Rodrigues, C. M.;Moraes, S. G.; Filho, J. M.; Alves, O. L. J. Phys. Chem. C 2009,113, 20234. doi: 10.1021/jp9068043

    20. [20]

      (20) Chu, S.; Zheng, X.; Kong, F.;Wu, G.; Luo, L.; Guo, Y.; Liu, H.;Wang, Y.; Yu, H.; Zou, Z.; Liu, Z. Mater. Chem. Phys. 2011,129, 1184. doi: 10.1016/j.matchemphys.2011.06.004(20) Chu, S.; Zheng, X.; Kong, F.;Wu, G.; Luo, L.; Guo, Y.; Liu, H.;Wang, Y.; Yu, H.; Zou, Z.; Liu, Z. Mater. Chem. Phys. 2011,129, 1184. doi: 10.1016/j.matchemphys.2011.06.004

    21. [21]

      (21) Zhao, G., Lei, Y.; Zhang, Y.; Li, H.; Liu, M. J. Phys. Chem. C2008, 112, 14786. doi: 10.1021/jp712054c(21) Zhao, G., Lei, Y.; Zhang, Y.; Li, H.; Liu, M. J. Phys. Chem. C2008, 112, 14786. doi: 10.1021/jp712054c

    22. [22]

      (22) Chien, S.; Liou, Y. C.; Kuo, M. C. Synthetic Metals 2005, 152,333. doi: 10.1016/j.synthmet.2005.07.254(22) Chien, S.; Liou, Y. C.; Kuo, M. C. Synthetic Metals 2005, 152,333. doi: 10.1016/j.synthmet.2005.07.254

    23. [23]

      (23) Wang, C.; Yin, L.; Zhang, L.; Liu, N.; Lun, N.; Qi, Y. ACS Appl. Mater. Interfaces 2010, 2, 3373. doi: 10.1021/am100834x(23) Wang, C.; Yin, L.; Zhang, L.; Liu, N.; Lun, N.; Qi, Y. ACS Appl. Mater. Interfaces 2010, 2, 3373. doi: 10.1021/am100834x

    24. [24]

      (24) Macak, J. M.; Schmidt-Stein, F.; Schmuki, P. Electrochem. Commun. 2007, 9, 1783. doi: 10.1016/j.elecom.2007.04.002(24) Macak, J. M.; Schmidt-Stein, F.; Schmuki, P. Electrochem. Commun. 2007, 9, 1783. doi: 10.1016/j.elecom.2007.04.002

    25. [25]

      (25) Zeng, H.; Cai,W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.;Kalt, H. ACS Nano 2008, 2, 1661. doi: 10.1021/nn800353q(25) Zeng, H.; Cai,W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.;Kalt, H. ACS Nano 2008, 2, 1661. doi: 10.1021/nn800353q

    26. [26]

      (26) Kumar, V.; Adamson, D. H.; Prudhomme, R. K. Small 2010, 6,2907. doi: 10.1002/smll.201001199(26) Kumar, V.; Adamson, D. H.; Prudhomme, R. K. Small 2010, 6,2907. doi: 10.1002/smll.201001199

    27. [27]

      (27) Jia,W.; Douglas, E. P. J. Mater. Chem. 2004, 14, 744. doi: 10.1039/b311917c(27) Jia,W.; Douglas, E. P. J. Mater. Chem. 2004, 14, 744. doi: 10.1039/b311917c

    28. [28]

      (28) Nakahira, A.; Kubo, T.; Numako, C. Inorg. Chem. 2010, 49,5845. doi: 10.1021/ic9025816(28) Nakahira, A.; Kubo, T.; Numako, C. Inorg. Chem. 2010, 49,5845. doi: 10.1021/ic9025816

    29. [29]

      (29) Huang, J.; Cao, Y.; Huang, Q.; He, H.; Liu, Y.; Guo,W.; Hong,M. Cryst. Growth Des. 2009, 9, 3632. doi: 10.1021/cg900381h(29) Huang, J.; Cao, Y.; Huang, Q.; He, H.; Liu, Y.; Guo,W.; Hong,M. Cryst. Growth Des. 2009, 9, 3632. doi: 10.1021/cg900381h

    30. [30]

      (30) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.;Wang, N. Appl. Phys. Lett. 2003, 82, 281. doi: 10.1063/1.1537518(30) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.;Wang, N. Appl. Phys. Lett. 2003, 82, 281. doi: 10.1063/1.1537518

    31. [31]

      (31) Kochkar, H.; Lakhdhar, N.; Berhault, G.; Bausach, M.; Ghorbel,A. J. Phys. Chem. C 2009, 113, 1672. doi: 10.1021/jp809131z(31) Kochkar, H.; Lakhdhar, N.; Berhault, G.; Bausach, M.; Ghorbel,A. J. Phys. Chem. C 2009, 113, 1672. doi: 10.1021/jp809131z

    32. [32]

      (32) Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D. D. Int. J. Hydrog. Energy 2010, 35, 5254. doi: 10.1016/j.ijhydene.2010.02.129(32) Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D. D. Int. J. Hydrog. Energy 2010, 35, 5254. doi: 10.1016/j.ijhydene.2010.02.129

    33. [33]

      (33) Boccuzzi, F.; Coluccia, S.; Martra, G.; Ravasio, N. J. Catal.1999, 184, 316. doi: 10.1006/jcat.1999.2428(33) Boccuzzi, F.; Coluccia, S.; Martra, G.; Ravasio, N. J. Catal.1999, 184, 316. doi: 10.1006/jcat.1999.2428

    34. [34]

      (34) Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355.doi: 10.1021/ja980861w(34) Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355.doi: 10.1021/ja980861w

    35. [35]

      (35) Doremus, R. H.; Rao, P. J. Mater. Res. 1996, 11, 2384.(35) Doremus, R. H.; Rao, P. J. Mater. Res. 1996, 11, 2384.

    36. [36]

      (36) Pestryakov, A. N.; Petranovskii, V. P.; Kryazho, A.; Ozhereliev,O.; Pfcander, N.; Knop-Gericke, A. Chem. Phys. Lett. 2004,385, 173. doi: 10.1016/j.cplett.2003.12.077

      (36) Pestryakov, A. N.; Petranovskii, V. P.; Kryazho, A.; Ozhereliev,O.; Pfcander, N.; Knop-Gericke, A. Chem. Phys. Lett. 2004,385, 173. doi: 10.1016/j.cplett.2003.12.077

  • 加载中
计量
  • PDF下载量:  998
  • 文章访问数:  3278
  • HTML全文浏览量:  43
文章相关
  • 发布日期:  2012-07-10
  • 收稿日期:  2012-03-28
  • 网络出版日期:  2012-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章