引用本文:
谢安东, 施德恒, 朱遵略, 朱正和. BH分子X 1Σ+、A 1Π和B 1Σ+ 态的势能函数[J]. 物理化学学报,
2005, 21(06): 658-662.
doi:
10.3866/PKU.WHXB20050616
Citation: XIE An-dong, SHI De-heng, ZHU Zun-lue, ZHU Zheng-he. Analytical Potential Energy Functions for the Electronic States X 1Σ+, A 1Π and B 1Σ+ of BH Molecule[J]. Acta Physico-Chimica Sinica, 2005, 21(06): 658-662. doi: 10.3866/PKU.WHXB20050616

Citation: XIE An-dong, SHI De-heng, ZHU Zun-lue, ZHU Zheng-he. Analytical Potential Energy Functions for the Electronic States X 1Σ+, A 1Π and B 1Σ+ of BH Molecule[J]. Acta Physico-Chimica Sinica, 2005, 21(06): 658-662. doi: 10.3866/PKU.WHXB20050616

BH分子X 1Σ+、A 1Π和B 1Σ+ 态的势能函数
摘要:
利用SAC/SAC-CI方法,使用D95++、6-311++g及cc-PVTZ等基组,对BH分子的基态(X 1Σ+)、第一简并激发态(A 1Π)及第二激发态(B 1Σ+)的平衡结构和谐振频率进行了优化计算. 通过对三个基组计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(group sum of operators)方法对基态(X 1Σ+), SAC-CI的GSUM方法对激发态(A 1Π 和B 1Σ+)进行单点能扫描计算, 用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X 1Σ+)、第一简并的激发态(A 1Π)和第二激发态(X 1Σ+)相对应的光谱常数(Be、αe、ωe 和ωeχe),结果与实验数据较为一致. 其中基态、第一激发态与实验数据吻合得较好.
English
Analytical Potential Energy Functions for the Electronic States X 1Σ+, A 1Π and B 1Σ+ of BH Molecule
Abstract:
The energies, equilibrium geometries and harmonic frequencies of three electronic states (the ground state X 1Σ+, the first degenerate state A 1Π and the second state B 1Σ+)of BH molecule have been calculated using the GSUM (group sum of operators) method of SAC/ SAC-CI with the basis sets D95++, 6-311++g and cc-PVTZ. Comparing among the above mentioned three basis sets, the conclusion is gained that the basis set cc-PVTZ is the most suitable for the energy calculation of BH molecule. The whole potential curves for these three electronic states are further scanned using SAC/cc-PVTZ method for the ground state and SAC-CI/cc-PVTZ methods for the excited states, then having a least square fitting to Murrell-Sorbie function, and last the spectroscopy constants (Be, αe, ωe, andωeχe) are calculated, which are in better agreement with the experimental data. It is believed that Murrell-Sorbie function form and SAC/ SAC-CI method are suitable not only for the ground state, but for the low-lying excited states as well.

计量
- PDF下载量: 2615
- 文章访问数: 3664
- HTML全文浏览量: 36