引用本文:
邵毓芳, 刁蓓蓓, 程镕时*. 毛细管粘度计动能和残液改正的综合效应[J]. 物理化学学报,
1986, 2(04): 350-355.
doi:
10.3866/PKU.WHXB19860414
Citation: Shao Yuefang, Diao Beibei, Cheng Rongshi*. THE KINETIC ENERGY AND DRAINAGE CORRECTIONS IN CAPILLARY VISCOSIMETRY[J]. Acta Physico-Chimica Sinica, 1986, 2(04): 350-355. doi: 10.3866/PKU.WHXB19860414

Citation: Shao Yuefang, Diao Beibei, Cheng Rongshi*. THE KINETIC ENERGY AND DRAINAGE CORRECTIONS IN CAPILLARY VISCOSIMETRY[J]. Acta Physico-Chimica Sinica, 1986, 2(04): 350-355. doi: 10.3866/PKU.WHXB19860414

毛细管粘度计动能和残液改正的综合效应
摘要:
对玻璃毛细管粘度计驱动静压的动能损耗和器壁粘附液体的残液效应作了统一的处理, 说明两者紧密相关, 不能分离。毛细管粘度计的工作方程具有
η/ρt=A~*-B~*/t2-C~*/t4
的形式, 其中A~*, B~*、C~*为仪器常数, 均与粘度计的尺寸和残液效应因子有关。理论指出, 在习惯用的Poiseuille-Hagenbach公式动能改正项中引进的数值因子m是由于液体粘附于球泡器壁引起的后果, 相当于m=1+C~*/B~(*t2), 从而解释了数值因子随Reynold数增加而增大的事实。列举了溶液相对粘度的计算公式和仪器常数的订定方法, 并给出了文献和实验的例证。
η/ρt=A~*-B~*/t2-C~*/t4
的形式, 其中A~*, B~*、C~*为仪器常数, 均与粘度计的尺寸和残液效应因子有关。理论指出, 在习惯用的Poiseuille-Hagenbach公式动能改正项中引进的数值因子m是由于液体粘附于球泡器壁引起的后果, 相当于m=1+C~*/B~(*t2), 从而解释了数值因子随Reynold数增加而增大的事实。列举了溶液相对粘度的计算公式和仪器常数的订定方法, 并给出了文献和实验的例证。
English
THE KINETIC ENERGY AND DRAINAGE CORRECTIONS IN CAPILLARY VISCOSIMETRY
Abstract:
The kinetic energy loss and drainage effect of glass capillary viscometer are treated theoretically. These two correction factors interrelate closely and can not be separated with each other. The representative equation of glass capillary viscometer for measuring liquid viscosity may be written as
η/ρt=A~*-(B~*/t~2)-(C~*/t~4)
in which A*, B* and C* are instrumental constants. The numerical factor m of the kinetic energy correction term in the Poiseuille-Hagenbach equation is raised from the effect of adhering of liquids on the wall of the viscometer and may be represented by
m=1+(C~*/B~*t~2)
Therefore, the fact of ascending m with increasing Reynold number will be explained. Equations for calculating the relative viscosity of polymer solution and method for determining the instrumental constants are given.
η/ρt=A~*-(B~*/t~2)-(C~*/t~4)
in which A*, B* and C* are instrumental constants. The numerical factor m of the kinetic energy correction term in the Poiseuille-Hagenbach equation is raised from the effect of adhering of liquids on the wall of the viscometer and may be represented by
m=1+(C~*/B~*t~2)
Therefore, the fact of ascending m with increasing Reynold number will be explained. Equations for calculating the relative viscosity of polymer solution and method for determining the instrumental constants are given.

计量
- PDF下载量: 1791
- 文章访问数: 2092
- HTML全文浏览量: 18