引用本文:
毛江洪, 倪哲明, 潘国祥, 胥倩. Cu催化水煤气的变换反应机理[J]. 物理化学学报,
2008, 24(11): 2059-2064.
doi:
10.3866/PKU.WHXB20081121
Citation: MAO Jiang-Hong, NI Zhe-Ming, PAN Guo-Xiang, XU Qian. Mechanism of the Copper-Catalyzed Water Gas Shift Reaction[J]. Acta Physico-Chimica Sinica, 2008, 24(11): 2059-2064. doi: 10.3866/PKU.WHXB20081121
Citation: MAO Jiang-Hong, NI Zhe-Ming, PAN Guo-Xiang, XU Qian. Mechanism of the Copper-Catalyzed Water Gas Shift Reaction[J]. Acta Physico-Chimica Sinica, 2008, 24(11): 2059-2064. doi: 10.3866/PKU.WHXB20081121
Cu催化水煤气的变换反应机理
摘要:
采用密度泛函理论(DFT), 对Cu催化水煤气变换反应三种可能的微观机理进行了理论研究. 在GGA-PW91理论水平下优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型, 并通过频率分析对过渡态进行了验证. 研究结果表明, 甲酸根机理的可能性最小, 羧基机理与氧化还原机理的可能性较大, 且与氧化还原机理相比, 羧基机理因在反应过程中有中间体COOH(s)生成, 且它与OH(s)发生歧化反应仅需越过3.8 kJ·mol-1的活化能垒, 所以反应更易遵循这条路径进行.
English
Mechanism of the Copper-Catalyzed Water Gas Shift Reaction
Abstract:
A detailed density functional theory (DFT) investigation revealed three possible micro-mechanisms of the water-gas shift reaction catalyzed by copper. Geometries of stationary points (reactants, intermediates, transition states and products) were optimized with the self-consistent Perdew-Wang-91 generalized gradient approximation (GGA-PW91) method. All transition states were verified by the frequency analysis method. Results showed that the formate mechanismhad a lowprobability, while the carboxyl mechanismand the redox mechanismwere more probable. During the carboxyl mechanism, the intermediate COOH(s) was formed followed by its decomposition via disproportionation with OH (s). The calculated activation energy barrier for the carboxyl mechanism was 3.8 kJ·mol-1, which was lower than that for the redox mechanism.
扫一扫看文章
计量
- PDF下载量: 1845
- 文章访问数: 4388
- HTML全文浏览量: 62

下载: