
Citation: Yun-Cai Zhou, Xue-Yan Xu, Peng Wang, Huifen Fu, Chen Zhao, Chong-Chen Wang. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40(12): 1912-1923. doi: S1872-2067(19)63433-9

UiO-66-NH2/Ag2CO3复合物简易制备及其在可见光驱动下的高效光催化性能
本文采用简单的原位离子交换沉积法,以UiO-66-NH2和AgNO3为前驱体在室温下快速制备了一系列具直接Z型异质结的UiO-66-NH2/Ag2CO3复合物(记为UAC-X,其中X=20、50、100、150和200,代表UiO-66-NH2在复合物中的含量).采用傅里叶变换红外光谱(FTIR)、粉末X射线衍射(PXRD)、扫描电镜(SEM)、透射电镜(TEM)、高倍透射电镜(HRTEM)、紫外-可见漫反射(UV-Vis DRS)和X射线光电子能谱(XPS)等技术对UAC-X复合物的形貌和结构进行了表征.研究了UAC-X在可见光照射下光催化还原六价铬(Cr(VI))和UAC-100降解有机染料的性能.探究了不同pH (pH=2、3、4、6和8)、不同小分子有机酸(柠檬酸、酒石酸和草酸)及共存离子(自来水和地表水中的离子)对光催化还原Cr(VI)的影响.
结果表明,PXRD谱图显示UAC-X的衍射峰位置分别与UiO-66-NH2和Ag2CO3峰位置完全吻合.SEM、TEM和HRTEM图片证明在UAC-X复合物中Ag2CO3附着在UiO-66-NH2表面.光照50min后,UAC-X复合物还原Cr(VI)的效率(UAC-20和UAC-50分别为68%和86%,UAC-100、UAC-150和UAC-200为100%)均高于UiO-66-NH2(19%)和Ag2CO3(8.0%).UAC-X复合物中UiO-66-NH2含量增加(比如UAC-20、UAC-50和UAC-100)导致其光催化Cr(VI)活性增强,其原因在于比表面积增大,且表面增强的正电荷对Cr2O72-吸附能力增强,最终提升了其光催化效率.
不同pH值下的光催化实验结果表明:酸性条件下光催化效率远优于碱性条件,这是因为在酸性条件下充足的H+和表面正电性有利于Cr(VI)还原为Cr(Ⅲ);在碱性条件下,UAC-100表面呈负电性与CrO42-发生排斥,且形成的Cr(OH)3沉淀会遮盖催化剂表面活性位点,导致光催化效率下降.反应溶液中的共存离子也会影响光催化效率:自来水中的无机离子可在一定程度上抑制UAC-100对Cr(VI)的光催化效率;湖水中存在的少量有机物可消耗空穴而减弱共存无机离子对Cr(VI)还原效率的负面影响.向无共存离子存在的模拟废水体系中加入酒石酸、柠檬酸和草酸等小分子有机酸时,UAC-100作为光催化剂还原Cr(VI)的速率和效率显著提高,这是因为小分子有机物可有效捕捉空穴,加强光生电子和空穴的分离.光致发光分析、电化学分析、电子自旋共振(ESR)和活性物质捕获实验显示,UAC-100中Ag2CO3导带(CB)上的光生电子转移至UiO-66-NH2最高已占轨道(HOMO),表明在UAC-100复合物中形成了直接Z型异质结,提高了光生电子和空穴的分离效率,最终加强了光催化还原Cr (VI)的活性.同时,UAC-100经过4次光催化循环实验后其还原Cr (VI)效率仍然可达99%,且PXRD谱图未见明显变化,表明UAC-100具有稳定性和重复利用性.综上,UiO-66-NH2/Ag2CO3是一种具有应用前景的高效复合型光催化剂.
English
Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite
-
Key words:
- Metal-organic framework
- / Ag2CO3
- / Hexavalent chromium
- / Photocatalytic
- / Reaction mechanism
-
-
[1] H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng, J. Hazard. Mater., 2017, 332, 79-86.
-
[2] W. Huang, N. Liu, X. Zhang, M. Wu, L. Tang, Appl. Surf. Sci., 2017, 425, 107-116.
-
[3] J. J. Testa, M. A. A. Grela, M. I. Litter, Environ. Sci. Technol., 2004, 38, 1589-1594.
-
[4] Y. Zhang, M. Xu, H. Li, H. Ge, Z. Bian, Appl. Catal. B, 2018, 226, 213-219.
-
[5] Y. Xing, X. Chen, D. Wang, Environ. Sci. Technol., 2007, 41, 1439-1443.
-
[6] B. Galan, D. Castaneda, I. Ortiz, Water Res., 2005, 39, 4317-4324.
-
[7] C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le, J. Yu, J. Hazard. Mater., 2017, 321, 801-811.
-
[8] G. Pugazhenthi, S. Sachan, N. Kishore, A. Kumar, J. Membr. Sci., 2005, 254, 229-239.
-
[9] I. Heidmann, W. Calmano, J. Hazard. Mater., 2008, 152, 934-941.
-
[10] R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, J. Hazard. Mater., 2015, 287, 364-372.
-
[11] L. B. Khalil, W. E. Mourad, M. W. Rophael, Appl. Catal. B, 1998, 17, 267-273.
-
[12] C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater., 2012, 223-224, 1-12.
-
[13] H. Zhao, Q. Xia, H. Xing, D. Chen, H. Wang, ACS Sustain. Chem. Eng., 2017, 5, 4449-4456.
-
[14] V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl. Catal. B, 2015, 170-171, 153-161.
-
[15] Z. Wu, X. Yuan, J. Zhang, H. Wang, L. Jiang, G. Zeng, ChemCatChem, 2017, 9, 41-64.
-
[16] Z. Sha, H. S. Chan, J. Wu, J. Hazard. Mater., 2015, 299, 132-140.
-
[17] H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu, L. Jiang, H. Li, J. Hazard. Mater., 2015, 286, 187-194.
-
[18] C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev, 2010, 39, 4206-4219.
-
[19] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev, 2014, 43, 5234-5244.
-
[20] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev., 2014, 114, 9919-9986.
-
[21] C. Yu, Q. Fan, Y. Xie, J. Chen, Q. Shu, J. C. Yu, J. Hazard. Mater., 2012, 237-238, 38-45.
-
[22] Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578.
-
[23] Y. Feng, H. Li, L. Ling, S. Yan, D. Pan, H. Ge, H. Li, Z. Bian, Environ. Sci. Technol., 2018, 52, 7842-7848.
-
[24] H. Ye, Y. Liu, S. Chen, H. Wang, Z. Liu, Z. Wu, Chin. J. Catal., 2019, 40, 631-637.
-
[25] Y. Feng, L. Ling, J. Nie, K. Han, X. Chen, Z. Bian, H. Li, Z. L. Wang, ACS Nano, 2017, 11, 12411-12418.
-
[26] C. Yu, L. Wei, J. Chen, Y. Xie, W. Zhou, Q. Fan, Ind. Eng. Chem. Res., 2014, 53, 5759-5766.
-
[27] C. Yu, G. Li, S. Kumar, K. Yang, R. Jin, Adv. Mater., 2014, 26, 892-898.
-
[28] S. Song, B. Cheng, N. Wu, A. Meng, S. Cao, J. Yu, Appl. Catal. B, 2016, 181, 71-78.
-
[29] S. Li, X. Wang, Q. He, Q. Chen, Y. Xu, H. Yang, M. Lü, F. Wei, X. Liu, Chin. J. Catal., 2016, 37, 367-377.
-
[30] H. Yu, W. Chen, X. Wang, Y. Xu, J. Yu, Appl. Catal. B, 2016, 187, 163-170.
-
[31] C. Dong, K.-L. Wu, X.-W. Wei, X.-Z. Li, L. Liu, T.-H. Ding, J. Wang, Y. Ye, CrystEngComm, 2014, 16, 730-736.
-
[32] J. Meng, Q. Chen, J. Lu, H. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 550-562.
-
[33] A. Crake, K. C. Christoforidis, A. Kafizas, S. Zafeiratos, C. Petit, Appl. Catal. B, 2017, 210, 131-140.
-
[34] Y. Su, Z. Zhang, H. Liu, Y. Wang, Appl. Catal. B, 2017, 200, 448-457.
-
[35] R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, Y. Shen, Y. Yuan, Adv. Mater. Interfaces, 2015, 2, 1500037.
-
[36] C. Gomes Silva, I. Luz, F. X. Llabres i Xamena, A. Corma, H. Garcia, Chem.-Eur. J., 2010, 16, 11133-11138.
-
[37] L. Shi, X. Meng, T. Wang, H. Zhang, K. Chang, H. Liu, J. Ye, Adv. Sci., 2015, 2, 1500006.
-
[38] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Appl. Catal. B, 2016, 193, 198-216.
-
[39] X.-H. Yi, F.-X. Wang, X.-D. Du, P. Wang, C.-C. Wang, Appl. Organomet. Chem., 2019, 33, 1-11.
-
[40] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans., 2013, 42, 13649-13657.
-
[41] Q. Xia, B. Huang, X. Yuan, H. Wang, Z. Wu, L. Jiang, T. Xiong, J. Zhang, G. Zeng, H. Wang, J. Colloid Interface Sci., 2018, 530, 481-492.
-
[42] C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energy Environ. Sci., 2014, 7, 2831-2867.
-
[43] Q. Liang, M. Zhang, Z. Zhang, C. Liu, S. Xu, Z. Li, J. Alloys Compd., 2017, 690, 123-130.
-
[44] X.-H. Yi, F.-X. Wang, X.-D. Du, H. Fu, C.-C. Wang, Polyhedron, 2018, 152, 216-224.
-
[45] H. Li, S. Yao, H.-L. Wu, J.-Y. Qu, Z.-M. Zhang, T.-B. Lu, W. Lin, E.-B. Wang, Appl. Catal. B, 2018, 224, 46-52.
-
[46] D. Guo, R. Wen, M. Liu, H. Guo, J. Chen, W. Weng, Appl. Organomet. Chem., 2015, 29, 690-697.
-
[47] D. Azarifar, R. Ghorbani-Vaghei, S. Daliran, A. R. Oveisi, ChemCatChem, 2017, 9, 1992-2000.
-
[48] J.-J. Zhou, R. Wang, X.-L. Liu, F.-M. Peng, C.-H. Li, F. Teng, Y.-P. Yuan, Appl. Surf. Sci., 2015, 346, 278-283.
-
[49] N. Zhang, X. Zhang, C. Gan, J. Zhang, Y. Liu, M. Zhou, C. Zhang, Y. Fang, J. Photochem. Photobiol. A, 2019, 376, 305-315.
-
[50] X.-Y. Xu, C. Chu, H. Fu, X.-D. Du, P. Wang, W. Zheng, C.-C. Wang, Chem. Eng. J., 2018, 350, 436-444.
-
[51] X.-Y. Xu, J. Zhang, X. Zhao, H. Fu, C. Chu, P. Wang, C.-C. Wang, ACS Appl. Nano Mater., 2019, 2, 418-428.
-
[52] H. R. Abid, J. Shang, H.-M. Ang, S. Wang, Int. J. Smart Nano Mater., 2013, 4, 72-82.
-
[53] J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi, J. Gu, J. Mate. Chem. A, 2015, 3, 7445-7452.
-
[54] Y. Ma, Z. Wang, X. Xu, J. Wang, Chin. J. Catal., 2017, 38, 1956-1969.
-
[55] J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys., 2016, 18, 31175-31183.
-
[56] D. K. Padhi, K. Parida, J. Mater. Chem. A, 2014, 2, 10300-10312.
-
[57] B. Sun, E. P. Reddy, P. G. Smirniotis, Environ. Sci. Technol., 2005, 39, 6251-6259.
-
[58] A. Liu, C. C. Wang, C. Z. Wang, H. F. Fu, W. Peng, Y. L. Cao, H. Y. Chu, A. F. Du, J. Colloid Interface Sci., 2018, 512, 730-739.
-
[59] X. Zhou, C. Hu, X. Hu, T. Peng, J. Qu, J. Phys. Chem. C, 2010, 114, 2746-2750.
-
[60] N. Fiol, C. Escudero, I. Villaescusa, Bioresource Technol., 2008, 99, 5030-5036.
-
[61] L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys., 2015, 17, 117-121.
-
[62] L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Nanoscale, 2013, 5, 9374-9382.
-
[63] L. Shen, L. Huang, S. Liang, R. Liang, N. Qin, L. Wu, RSC Adv., 2014, 4, 2546-2549.
-
[64] F. Chen, Q. Yang, Y. Wang, F. Yao, Y. Ma, X. Huang, X. Li, D. Wang, G. Zeng, H. Yu, Chem. Eng. J., 2018, 348, 157-170.
-
[65] M. Xu, Y. Chen, J. Qin, Y. Feng, W. Li, W. Chen, J. Zhu, H. Li, Z. Bian, Environ. Sci. Technol., 2018, 52, 13879-13886.
-
[66] K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chin. J. Catal., 2017, 38, 240-252.
-
[67] W. Fa, P. Wang, B. Yue, F. Yang, D. Li, Z. Zheng, Chin. J. Catal., 2015, 36, 2186-2193.
-
[68] Q. Liang, S. Cui, J. Jin, C. Liu, S. Xu, C. Yao, Z. Li, Appl. Surf. Sci., 2018, 456, 899-907.
-
[69] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179.
-
[70] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955.
-
[71] X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Front. Environ. Sci. Eng., 2018, 12, 1-32.
-
[72] G. Gebreslassie, P. Bharali, U. Chandra, A. Sergawie, P. K. Baruah, M. R. Das, E. Alemayehu, Appl. Organomet. Chemi., 2019, e5002.
-
[73] J. C. Wang, J. Ren, H. C. Yao, L. Zhang, J. S. Wang, S. Q. Zang, L. F. Han, Z. J. Li, J. Hazard. Mater., 2016, 311, 11-19.
-
[74] X. Hu, H. Ji, F. Chang, Y. Luo, Catal. Today, 2014, 224, 34-40.
-
-

计量
- PDF下载量: 38
- 文章访问数: 3667
- HTML全文浏览量: 404